
1

A Stepwise Auto-Profiling Method for Performance Optimization of
Streaming Applications

XUNYUN LIU, University of Melbourne, Australia
AMIR VAHID DASTJERDI, University of Melbourne, Australia
RODRIGO N. CALHEIROS, Western Sydney University, Australia
CHENHAO QU, University of Melbourne, Australia
RAJKUMAR BUYYA, University of Melbourne, Australia

Data stream management systems (DSMSs) are scalable, highly available, and fault-tolerant systems that
aggregate and analyze real-time data in motion. To continuously perform analytics on the fly within the
stream, state-of-the-art DSMSs host streaming applications as a set of inter-connected operators, with each
operator encapsulating the semantic of a specific operation. For parallel execution on a particular platform,
these operators need to be appropriately replicated in multiple instances that split and process the workload
simultaneously. Because the way operators are partitioned affects the resulting performance of streaming
applications, it is essential for DSMSs to have a method to compare different operators and make holis-
tic replication decisions to avoid performance bottlenecks and resource wastage. To this end, we propose
a stepwise profiling approach to optimize application performance on a given execution platform. It auto-
matically scales distributed computations over streams based on application features and processing power
of provisioned resources, and builds the relationship between provisioned resources and application perfor-
mance metrics to evaluate the efficiency of the resulting configuration. Experimental results confirm that
the proposed approach successfully fulfils its goals with minimal profiling overhead.

CCS Concepts: •Information systems→ Data streams; Stream management; Database performance
evaluation; •Social and professional topics→ Quality assurance; •Software and its engineering→
Software performance;

Additional Key Words and Phrases: Stream Processing, Data Stream Management Systems, Performance
Optimization, Resource Management

ACM Reference Format:
Xunyun Liu, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Chenhao Qu, and Rajkumar Buyya, 2017. A Step-
wise auto-profiling method for performance optimization of streaming applications. ACM Trans. Autonom.
Adapt. Syst. 0, 0, Article 1 (January 2017), 33 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Stream processing—a paradigm that supports leveraging data in motion for
analytics—is rapidly emerging due to continuous generation of data and the need for
their timely processing. Usually, stream processing is realized by a data stream man-
agement system (DSMS), a platform that supports on-line analysis of rapidly changing
data streams while hiding the underlying complexity of implementation from applica-

Authors’ addresses: Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and
Information Systems, The University of Melbourne, Australia; emails: {xunyunl@student., amir.vahid@,
cqu@student., rbuyya@}unimelb.edu.au; Rodrigo N. Calheiros: Locked Bag 1797 Penrith NSW 2751 Aus-
tralia; email: R.Calheiros@westernsydney.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2017 ACM. 1556-4665/2017/01-ART1 $15.00
DOI: 0000001.0000001

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:2 X. Liu et al.

A

B

C

D

A1

B2

C2

D1

A2

B1 B3

C1 C4C3

Fig. 1. The logical view of a streaming application on an operator-based DSMS.

tion developers. Currently, most state-of-the-art DSMSs such as Storm1 and Samza2

are data-driven and operator-based. In operator-based DSMSs, continuous operations
on data are realized as logical operators standing on data streams, and the DSMS is
responsible for the partition and distribution of resources among operators to achieve
satisfactory performance [Aniello et al. 2013].

For a streaming application, resource partitioning largely depends on how operators
are built and organised. To better explain this process, Figure 1 illustrates the logical
view of a typical streaming application. The left part of Figure 1 shows that all the
queries3 have been translated into a pipeline of operators that perform transformations
on the data. The relative size of operators represents the relative time complexity,
with edges indicating data flows within the application. These operators and edges
constitute the application topology, which can be modelled as a directed acyclic graph
(DAG) that wires the operations together and denotes the sequence by which a single
datum traverses the system.

When it comes to the implementation, the topology of a streaming application is fur-
ther subdivided. To enable parallel processing, each operator may have several tasks
scattering out over the platform. Each task is an operator instance that ingests a por-
tion of operator input and executes the whole operator logic simultaneously. As the
right side of Figure 1 shows, tasks of a downstream operator in the topology take the
results of its precedents as input and continuously feed the successors with its output
stream. Clearly, it is important for an operator to secure a sufficient number of parallel
tasks, so that it could timely process its inbound load and avoid being the bottleneck
that throttles the overall throughput of the system.

However, decision of the number of instances in each operator depends on the spe-
cific application deployment process, which involves provisioning resources from the
underlying hardware infrastructure and determining how the logical representation
is mapped to a physical point of view for real execution. The latter is known as a crit-
ical transition from logic notation to real implementation. Figure 2 shows an example
of this transition process. Tasks are wrapped up by threads, which are usually consid-
ered as the minimum units of execution in terms of resource scheduling, then threads
affiliated to several processes are deployed on the particular execution environment. It

1https://storm.apache.org/
2http://samza.apache.org
3By query, we mean formal statements of information needs that apply on continuous streams and that
demand some computational capacity to be processed.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

https://storm.apache.org/
 http://samza.apache.org

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:3

A1 B2 C2 D1A2 B1 B3 C1 C4C3 Task Level

Infrastructure Level

Process Level

Thread LevelThread1 Thread2 Thread3

Process1 Process2 Process3

Thread4

Fig. 2. The physical view of an example streaming application on an operator-based DSMS. After being
wrapped up by threads and processes, the tasks of operators are finally deployed on several physical or
virtual machines.

is non-trivial task to make optimal choices in such transition from logical to physical
view because:

(1) Different operators can have diverse requirements on different types of resources
(CPU, memory, network bandwidth, etc.).

(2) Changing the number of tasks for one operator may adversely affect the perfor-
mance of other operators that are collocated in the same machine, causing unex-
pected bottleneck shift. Such kind of resource contention is hard to formally model.

(3) The transition is largely platform-dependent. Thus, without field testing, it is dif-
ficult to guarantee the effectiveness and efficiency of the transition decision.

Due to the difficulties stated above, the most common approach used to determine
operator parallelism is to gradually measure the execution capacity of each operator
and adjust the number of tasks according to the expertise of the developer. Obviously,
this method involves a huge number of man-hours and may result in a suboptimal con-
figuration. As existing research mainly focuses on the other side of the problem, which
is scheduling threads on processes or arranging processes on machines [Cammert et al.
2007; Moakar et al. 2012; Aniello et al. 2013; Bellavista et al. 2014], the research ques-
tion of automatically finding a proper and integral solution to this transition is largely
overlooked.

Motivated by the goals of automation and enhanced developers’ productivity, we
design and implement a stepwise profiling framework that selectively evaluates sev-
eral possible configurations, monitors feedbacks, and provides an entire solution to the
transition. The objective of the proposed profiler is to determine the possible best per-
formance4 that the application can achieve in a particular execution environment. To
the best of our knowledge, this is the first work using profiling to holistically probe the
best configuration for an arbitrary streaming application, which is capable of strik-
ing a balance between the data source and data ingestion subsystems for it to achieve
sustainable high performance. Specifically, our main contributions are threefold:

— Our profiling system automatically scales up the streaming application on a given
platform. Such processing parallelization is achieved by profiling of both application
features and processing power of provisioned resources. Therefore, developers are no
longer required to provide parallel settings beforehand.

4Though the meaning of performance may vary under various definitions of QoS (Quality of Service), we
refer to it as the ability to steadily handle an input stream of throughput T within an acceptable processing
latency L. In this sense, higher T means better performance as long as the latency constraint is met.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:4 X. Liu et al.

— The profiling strategy is designed as a feed-back control loop that allows for self-
adaptivity, scalability, and general applicability to a wide range of streaming appli-
cations, which is demonstrated in our experiments.

— Based on the result of profiling, the relationship between resource provisioning and
performance metrics of application is built, enabling further evaluation of the effi-
ciencies of candidate topologies that are implemented for the same streaming appli-
cation.

2. MOTIVATION
The development cycle of a streaming application on an operator-based DSMS typi-
cally consists of two phases. The first phase consists in the logic development, where all
the continuous queries or other data operations are implemented as logical operators
working on data streams. The second phase consists in the application deployment,
which mainly comprises a transition from logical to physical view. In this phase, the
parallelism setting for each operator is determined and the decision on how tasks of
operators are wrapped up and mapped to underlying resources is made, which are col-
lectively referred to as a parallel configuration. Our primary motivation is to automate
the transition and ensure that, in the resulting configuration, resources are properly
partitioned among operators to enable better performance.

As mentioned above, optimization of the application deployment is a non-trivial pro-
cess. Here are three fundamental prerequisites that a streaming application should
meet before it comes into service.

Application scaling: Scaling up5 is a critical process for a streaming application to
use distributed resources. As scaling is both resource specific and topology dependent,
there is no universal model able to provide a general solution. Therefore, the transi-
tion in the second phase has to be designed and performed by developers according to
their own experiences, which causes additional development burden and may not yield
efficient resource utilization. It becomes even more problematic when the underlying
resource structure is configurable. State-of-the-art DSMSs are integrating elasticity
into their implementation to enable resource consumptions customization with regard
to fluctuating workloads. They support (1) dynamic resizing, e.g. DSMS can be scaled
out by adding new machines, and (2) adjustable operator parallelization, which allows
stateful and stateless operators to choose their number of tasks in order to suit differ-
ent sizes of execution environment. However, applications running on an elastic DSMS
do not have the ability to adapt their configuration to infrastructure changes, mean-
ing that they are unable to automatically take advantage of newly added compute
resources when the DSMS is scaled out, and may face severe resource contention due
to excessive parallelization when the DSMS is scaled in. Our work fills in this gap by
automating the scaling up process once the underlying system is updated, which com-
plements efforts towards making DSMS scalable and elastic [Schneider et al. 2009;
Schneider et al. 2012; Castro Fernandez et al. 2013; Gedik et al. 2014].

Besides, it is also desirable to quantitatively evaluate how efficient the transition is
and automatically probe whether there is still room for improvements. However, due to
the labor-intensive task of manual deployment, it is a common practice for developers
to stop scaling up the application when a transition that meets the requirement of
performance is found. Nevertheless, it may result in suboptimal resource utilization.

DAGs comparison: The topology of a streaming application is organised as a di-
rected acyclic graph (DAG) of logical operators. However, the conversion of queries
and operations on data streams into operators, which is performed in the first phase,

5Scaling up refers to further parallelizing the execution of logical operators to improve the resource utiliza-
tion of a streaming application, whereas scaling out/in stands for adding or removing machines.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:5

Application Feature
Profiling

Platform Capability
Profiling

Operator Capacity
Profiling

Kestrel
Spout

Json
Parser

Sentence
Splitter

Word
Counter

Determine
relative

proportions

Determine
absolute
 number

Fine tune
configuration

Word count
application Json

Parser
Sentence
Splitter

Word
Counter

2 : 2 : 3

Json
Parser

Sentence
Splitter

Word
Counter

4 8 8 12

Kestrel
Spout

Json
Parser

Sentence
Splitter

Word
Counter

4 8 10 12

Kestrel
Spout

Fig. 3. Flowchart of stepwise profiling and a working demonstration on a word count application.

can be conducted in multiple ways, resulting in different topologies that are logically
equivalent. It means that, although different types of DAGs are formed by operators,
they take the same input stream and all produce correct answers. It is difficult but
still necessary to determine which one is better with respect to their performances in
a particular platform.

Resource requirement analysis: It is essential to know how many resources are
needed to meet time constraints to handle the inbound stream. The answer depends
on the volume of the input stream and the application resource needs per input data
element. In the context of stream processing, the input stream may vary significantly
in volume and speed and so does the amount of resource needed per element. Usually,
application developers do not have control over the input data [Hummer et al. 2013],
but tracking the latter could help them to guarantee real-time response with minimal
resource consumption when the workload varies. Based on this, a rule-based auto-
scaling approach could be proposed.

In this paper, we choose application profiling as an empirical and adaptive approach
to fulfil the above targets. Compared to analytical models based on abstract modelling,
profiling excels as it provides more reliable results via real experiments. Furthermore,
by taking advantage of profiling, our method is generic enough to support different ex-
ecution environments, including variations in characteristics of underlying resources,
load balancing of DSMS, and the type of streaming application running on it. Besides,
a recalibration mechanism has been introduced to ensure that the decision on parallel
configuration is up-to-date. Therefore, possible changes to application and DSMS, as
well as data-dependent variation affecting the execution time of data elements, will
not compromise the accuracy of profiled knowledge.

3. STEPWISE PROFILING OVERVIEW
The profiling process works by selectively evaluating several possible configurations
and finally choosing the one that shows the most promising performance potential,
i.e. the one capable of processing more data streams per unit time while meeting the
latency requirement.

Figure 3 describes the flowchart of our profiling approach and depicts how it applies
to a word count application on Apache Storm. The topology of word count consists of
four operators: the first operator, Kestrel Spout, pulls data from a queue server and
generates a continuous stream of tweets as its output. The second operator, JSON

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:6 X. Liu et al.

Stepwise
 Profiler

Operator‐based DSMS

Message
Queue

Profiling Message
Generator

Tasks Number
Array

Configuration
Modifier

Metric
Reporter

Application Feature
Profiler

Platform Capability
Profiler

Operator Capacity
Profiler

Monitor Module

Tasks
Scheduler

Configuration
Generator

Control Flow
Data Stream Flow

Metric Flow

Recalibration
Module

Fig. 4. The framework of stepwise profiling system. Components that constitute the stepwise profiler are
presented in the top of the figure and the profiling environment is depicted in the bottom of the figure.

Parser, parses the stream and extracts the main message body. Next, the Sentence
Splitter divides the main body of text into a collection of separate words, and finally
the Word Counter is responsible for the final occurrence counting.

Regarding the profiling procedure, Application Feature Profiling (the first step) sim-
ulates the situation in which each task has adequate resources to conduct its data
operation. It feeds the application with only a small size of input stream and aims to
identify inherent application features that are not affected by the change of parallel
configurations. On completion of this process, it determines the ratios of the numbers
of tasks for the last three operators, which in this case is 2:2:3.

Platform Capability Profiling (the second step) stresses the platform with a high
volume of input data to push it to its capability limit. At the end of this step, the actual
number of tasks for each operator is determined.

Operator Capacity Profiling (the last step) makes necessary adjustment by moni-
toring the capacity of each operator. As our profiling model and measurement in the
previous processes may have introduced some errors, this is the place where possible
amendments are made.

The recalibration is essentially a repetition of the aforementioned profiling steps,
triggered by performance degradation, detected via monitoring, when the resulted con-
figuration is no longer suitable for the current system status.

4. STEPWISE PROFILING DESIGN
Figure 4 illustrates the architecture of our stepwise profiler (top half of the figure) and
how it interacts with the operator-based DSMS in the profiling environment (bottom
half of the figure).

The profiling environment consists of a profiling message generator, a message
queue, and an operator-based DSMS. All the profiling input originates from the mes-
sage generator, where real data collected from the production environment is sent to
the message queue at a controllable speed. In the meantime, the message queue works
as a data buffer to store possible backlogs when the DSMS cannot cope with the speed
of data generation. The operator-based DSMS contains the primitive streaming appli-
cation logic as well as supporting hardware resources.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:7

Kestrel
Spout

Json
Parser

Sentence
Splitter

Word
Counter

Data
Source

Data
Sinks

Kestrel
Spout

Json
Parser

7%

Sentence
Splitter

7%

Word
Counter

85%

Data
Source

Data
Sinks

Application feature
profiling

Waiting Queue

Task1

Task2

Taskn

Waiting Latency
Lw

Processing Latency
Lp

Relative
Stream Size
RSS

Fig. 5. An example of application feature profiling in operation.

Each single round of profiling is a feedback control process that corresponds to
a MAPE (Monitoring, Analysis, Planning, Execution) loop, the approach of which is
widely adopted in the field of autonomic computing to enable self-adaptivity [Kephart
and Chess 2003].

The MAPE loop starts with the metric reporter running alongside the DSMS, which
constantly collects current performance metrics from the evaluated streaming applica-
tion. This information is then acquired by the monitor module and being organized as
a set of window-based performance histories. The analysis phase is conducted by the
three control units of our stepwise profiler as shown in the grey box of Figure 4, which
are referred to as Application Feature Profiler, Platform Capability Profiler and Opera-
tor Capacity Profiler. These modules check the collected performance metrics according
to their designated profiling strategies and make decisions on whether another round
of profiling is needed. The MAPE loop proceeds to the planning phase if the stopping
condition is not met. In this phase, the three control units make necessary amendment
on operator parallelism and rely on the configuration generator to compose a viable de-
ployment plan, which includes determining the speed of data generation for profiling,
the number of tasks for each operator, and how these tasks are deployed on DSMS. In
the last execution phase, the configuration modifier is responsible for applying changes
and facilitating automation of application deployment.

The recalibration module also works in the analysis phase to check if the previously
profiled configuration still suits the current system state. If not, it will plan for the
next round profiling without using any prior knowledge.

4.1. Application Feature Profiling
As illustrated in Figure 5, the logical view of a streaming application is divided into two
parts: data source, the operator that forms the initial stream by continuously pulling
data from external sources, and data sinks, where inbound data is buffered into a
waiting queue before being processed by one of the parallel tasks.

The application feature profiling aims to identify two invariant properties that an
operator should maintain regardless of its parallel degree through the analysis of a
data stream of a relative small size. The first property is the minimal processing la-
tency MinLp. As shown in Figure 5, the processing latency Lp is the time interval that
a single datum would spend in a task for being processed, while MinLp, illustrated

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:8 X. Liu et al.

by the size of operator on the right side of Figure 5, denotes the minimum value that
Lp can reach in this particular platform. The second property is the Relative Stream
Size (RSS), which indicates the relative data transmission intensity for the operator.
The word “relative” means that the amount of data transmitted between operators is
normalized with regard to the total sum to show the proportion among operators. As
shown in the right of Figure 5, the width of the lines between the operators represents
the size of data flow relative to other visible streams.

These two properties remain constant regardless of the parallel configuration
changes for two reasons. Firstly, for a given operator, MinLp only depends on its pro-
cessing logic and how long it takes for this logic to be executed in the platform. To
measure MinLp it is important to assert that the profiling stream load is sufficiently
small, so that each task of this operator obtains enough resources as it requires to pro-
cess the workload. On the other hand, changes in the parallelism for an operator, such
as adding new tasks for it, influence the waiting latency Lw rather than the processing
latency Lp, because a single datum in the stream cannot be executed by multiple tasks
concurrently. However, it is still possible that Lp increases due to improper configu-
rations, e.g. congested tasks may cause severe resource contention that causes high
processing latency.

Secondly, the relative size of the data stream is a reflection of the operator type,
which also makes it parallel-configuration irrelevant. More specifically, a given oper-
ator could be categorized into one of three types based on the correlation between its
input stream and output stream, as presented in Table I. Si and So denote the relative
size of input/output stream, respectively.

Table I. Categorization of operators based on its relative input/output stream
size (selectivity).

Type of Correlation Expression Example Operators

Proportional So = Ccoef ∗ Si Join, Function
Workload-Dependent So = f(workload) ∗ Si Split, Filter

Logic-Dependent So = g(logic) Top N, Aggregation

Proportional operators continuously work on one or more input streams and emit
results based on each piece of input, which means that the size of the output stream is
linear to the size of input stream, with Ccoef as a constant that represents the linear
coefficient. Examples for this category include stream joins and function operators. In
the case of word count, the JSON Parser belongs to this category because its output
size depends only on the particular input, and changes in the number of tasks do not
affect the output size.

In the case of workload-dependent operators, the relative size of the output stream
is not only decided by the size of input stream, but also it is influenced by the inherent
property of the workload. For example, different tweets may have different number
of countable words, making the size of output stream fluctuate even when the size of
the input stream is stable. But in the case of Figure 5, it is observed that, on aver-
age, the size of output stream for Sentence Splitter becomes 12 times larger than the
input streams, which means that the application profiling helps in identifying what
the value of f(workload) would be when subject to a production input. Obviously, this
correlation is also not affected by changes in the number of tasks available for the
Sentence Splitter.

There are also logic-dependent operators whose output streams solely depend on the
processing logic. Some common examples include the Top N operator, which compares
and emits the most popular items based on their occurrences, and stream aggregation

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:9

operator, which aggregates the input stream or regularly performs batch operations.
The Word Counter operator in Figure 5 is used for aggregation and thus is an example
of a logic-dependent operator.

Whenever an operator becomes a bottleneck, the DSMS has to throttle the upstream
and downstream operators to maintain the system stability. This leads to the observa-
tion that the streaming application can be well-approximated with an intuitive queue-
ing network of data flow, which runs on a computational system of unknown capability
where contention affects all tasks in the same way. The latter assumption may not
always hold true during the runtime, but it is reasonable for us to depict the relative
parallelism requirement for each operator.

In light of this, more resources (in this context, more tasks) should be allocated to
operators with relative larger input data streams and higher processing latency to
prevent bottlenecks in the first place. After profiling the minimal processing latency
and relative stream size for each operator, Algorithm 1 is proposed to provide an initial
estimation on the number of tasks that an operator should incorporate considering its
complexity and the amount of stream load it processes.

In summary, Algorithm 1 determines the parallelism ratio of each operator based
on its calculated task load. The task load TaskLoadi of operator i is formulated as the
product of its minimal processing latency MinLpi

multiplied by the sum of its input
stream sizes

∑
k

RSSk,i (index k iterates over all the input streams of operator i). After

the algorithm finishes traversing all the operators, each element in the resulted array−→
R is updated with a parallelism ratio relative to the weight of its task load (line 23).
Note that in both line 16 and 23, the index s of max

∀s
TaskLoads iterates through all the

operators in the topology.
However, there are two exceptions to this general rule. Some operators are logically

non-parallel, which means that they can have only one task and thus are more likely
to restrict the scalability of the whole system. Our algorithm takes these operators into
consideration by fixing their parallelism degrees to 1 and quantitatively calculating the
restriction they pose to the total size of stream flows (TotalF low). TotalF low intuitively
estimates the maximum sum of throughput generated by each operator. Based on this,
Algorithm 1 decides the parallelism ratio or degree for other parallel operators to be
able to handle the data stream of its share.

Secondly, some operators are non-scalable as they are dominated by logic-dependent
operators, which means that there exists a logic-dependent operator in every path that
connects this operator to the data source. Recalling that the size of output stream for a
logic-operator is irrelevant to the input size, we can reasonably infer, in this case, that
the size of input stream would be constant even if the system throughput increases.
Therefore, instead of assigning parallelism ratios to them in

−→
R , Algorithm 1 calculates

the initial parallelism degrees for these operators in
−→
P based on TotalF low and task

load, indicating that their parallelism degrees are not to be proportionally scaled in
the next step.

The output
−→
R of Algorithm 1 only provides an array of decimals. However, the next

step requires an array of integers, as this array represents the ratio of number of
tasks. In the decimal to integer conversion, precision is not the primary concern since
the results may be subject to measurement errors introduced by the profiling process.
Therefore, the chosen value in the resulted integer array is reduced if possible, in such
a way that it still roughly depicts the basic proportions. For this purpose, a parameter
of unit task load called slice is introduced to convert all the decimals in

−→
R into integers

according to Equation 1.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:10 X. Liu et al.

ALGORITHM 1: Calculate the relative ratio or number of tasks for each operator.
Input: MinLpi : minimum processing latency of operator i
Input: RSSi,j : relative stream size between consecutive operators i and j
Output: −→R : parallelism ratio array of parallel operators, in which Ri corresponds to operator i
Output: −→P : parallelism degree array of non-parallel and non-scalable operators, in which Pj

corresponds to operator j
1 Initialize each element of

−→
R to 1;

2 TotalF low ←∞;
3 Identify all the operators that are dominated by logic-dependent operator, label them as

Non-Scalable;
4 foreach Operator i do
5 if i is Non-Parallel then
6 Pi ← 1 ;
7 TotalF low ← min(TotalF low, 1

MinLpi
∗
∑
k

RSSk,i
);

8 end
9 else

/* Calculate TaskLoad for parallel operator i */
10 TaskLoadi ←MinLpi ∗

∑
k

RSSk,i;

11 end
12 end
13 foreach Parallel Operator i do
14 if i is Non-Scalable then
15 if TotalF low =∞ then
16 Pi ← d TaskLoadi

min
∀s

TaskLoads
e;

17 end
18 else
19 Pi ← dTaskLoadi ∗ TotalF lowe;
20 end
21 end
22 else
23 Ri ← TaskLoadi

max
∀s

TaskLoads
;

24 end
25 end
26 return −→R ,

−→
P ;

Ri ← d
Ri

slice
e slice ∈ (0, 1] (1)

The value of slice should be tailored to the specific streaming application. Our rule
of thumb is to try small values (0.1, 0.2, etc.) and select the one that minimizes the
profiling effort in the next step. Section 6.4 will shed more light on the parameter
selection with real experiments.

It is also worth mentioning that in line 3 we omit the process of identifying dom-
inance relationship for the sake of simplicity. Actually, there are some breadth-first
searches starting from each logic-dependent operator to examine which operators are
affected logic-dependent successors. In summary, the algorithm sequentially evaluates
the operator located at the head of queue with regard to the status of its predeces-
sors (each operator maintains a HashSet of all its status-undetermined predecessors
for quick location and removal). If an operator has all its predecessors marked as ei-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:11

Kestrel
Spout

Json
Parser

Sentence
Splitter

Word
Counter

Data
Source

Data
Sinks

Task Task

Scaling Up
Time Line

Task Task

Task Task

Evaluate Performance Change
Generate Next Configuration

Task

Evaluate Performance Change
Generate Next Configuration

Fig. 6. An example of platform capability profiling in operation.

ther logic-dependent or already dominated, i.e. its HashSet of status-undetermined
predecessors is emptied while this operator dequeues, it then should be identified as
dominated and its successors are added to the tail of queue for further evaluation.

Algorithm 1 also has a computational complexity of O(n) with the worst case being
O(n ∗ (d−avg + 2)), in which n is the number of operators and d−avg is the average vertex
in-degree in the topology graph. The most time-consuming step lies in line 3 as each
operator in the topology may be repeatedly visited, at most, its in-degree times to
determine whether it has been dominated by logic-dependent operators or not. Besides
line 3, the algorithm body traverses the topology graph only twice and all the required
input can be collected with simply one round of profiling.

4.2. Platform Capability Profiling
Unlike the previous step which requires only a small data stream to probe application
features, the platform capability profiling requires the message generator to produce
a continuous data stream that is large enough to stress the streaming application.
Given sufficient profiling data, the configuration of the application is changed through
a trial-and-error process in order to determine the real capability of DSMS as well as
its underlying infrastructure. The resulting configuration reveals a reasonable choice
of resource partition in this platform where it is capable of handling a relatively large
stream without violating the latency constraint6.

As shown in Figure 6, each configuration trial is first evaluated in terms of system
performance variation. Specifically, changes in throughput and latency are collected
and reported to the monitor module, which can be used to identify if the new configu-
ration improves the resource utilization. Configuration changes that have a negative
impact on the system performance are discarded in this phase.

Based on the result of performance evaluation, the profiler applies changes to the
configuration according to Algorithm 2 and generates a new one for the next round of
profiling. The new configuration not only targets throughput improvement, but also
aims at maintaining the balance between data source and data sinks. If it failed to

6Different applications may have different preferences with regard to their desirable performance. Though
the final decision is left up to the application developer, as a default the profiler favours better throughput
on the condition that the system still meets the pre-defined latency requirement.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:12 X. Liu et al.

Real System
Performance

Data Source Data Sink

Processing
Ability

Sourcecap Sinkcap

Data flow

(Xcap) (Xcap,Ycon)

Source0

Sink0

(X0)

(Xsink0,Ycon)

(X0,Y0)

P0

Source1

(X1)

(Xsink0,Y1)

P1

①

Sink1

(Xsink1,Ycon)(Xsink1,Y2)

P2

②

①

②

Fig. 7. Balancing data source and sinks in platform capability profiling. The vertical axis represents the
processing ability ordering by throughput. The horizontal axis denotes the system components we concern
about.

do so, an overly powerful data source may cause severe backlogs in data sinks and
lead to a higher system latency, while an inefficient data source starves the following
operators and encumbers the overall throughput. As a result, tasks are alternatively
added to the data source or to data sinks to strengthen their processing abilities, and
the search for the desired configuration leads the application to its performance limit
where neither enhancing data source nor data sinks improves it.

Figure 7 illustrates the aforementioned scaling process with an example. At each
edge of the figure, the solid short lines with labels indicate different configurations for
data source and data sinks, while the dashed lines in the middle represent the over-
all system performance resulting from the configurations on each side. Different con-
figurations lead to various processing potentials in terms of throughput and latency,
which are shown in the right corner. Thus, short lines are all ranked by throughput
with different heights in the figure, and the curves connecting them with numbers
denote the potential throughput variances that resulted from different configuration
changes by applying Algorithm 2. At first, the system is configured with Source0 for
data source and Sink0 for data sinks, where Source0 indicates that the data source is
able to pull a data stream at a throughput of X0, while Sink0 with (Xsink0, Ycon) means
that data sinks under this configuration are capable of dealing with a stream of size
Xsink0 within the user-specified latency constraint Ycon.

Given a particular platform, there should be a configuration that delivers the best
performance in this profiling environment, indicating that the data source and data
sinks have been properly coordinated. As denoted by the top two short lines in Figure
7, the data source Sourcecap and data sink Sinkcap represent such ideal configuration
that the profiler aims to achieve at the end of its operation. Initially, the data source
Source0 is less powerful than the data sink Sink0. Thus, the system performance P0 is
confined at (X0, Y0), where X0 is decided by Source0 and Y0 < Ycon because the data
sinks are underutilized. After detecting the latency margin, the profiler first scales
up data source to Source1, causing bottleneck shifts to data sinks Sink0. This time the
performance P1 is limited at (Xsink0, Y1) where Y1 > Ycon since that some backlogs have
already been accumulated. Afterwards, the profiler enhances the ability of data sinks
from Sink0 to Sink1, improving the performance from P1 to P2 = (Xsink1, Y2). However,
as indicated by Y2 > Ycon, the last modification is still inadequate and another sink
scaling is needed in the next round.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:13

ALGORITHM 2: Generation of a new configuration under the round-robin policy.
Input: T : Topology throughput
Input: α: Threshold for triggering reconfiguration
Input: Tb: Best throughput record
Input: −→R : Ratio of parallelism of each operator

1 if Last change increased T then
2 Tb ← T ;
3 if Latency constraint is not met then
4 foreach operator do Add tasks according to

−→
R and the operator’s position in the

topology;
5 end
6 else Increase number of tasks of source by 1;
7 end
8 else if Last change did not significantly change T † then
9 if Last change enhanced data sink then

10 Increase number of tasks of source by 1;
11 end
12 else if Last change enhanced data source then
13 foreach operator do Add tasks according to

−→
R and the operator’s position in the

topology;
14 end
15 else if Last change throttled the data source then
16 if latency requirement has been met then
17 Terminate the profiling;
18 end
19 else Increase throttle strength;
20 end
21 end
22 else if Last change decreased T then
23 if T < α ∗ Tb then
24 Return the system to the configuration where the best performance is observed;
25 Throttle the data source;
26 end
27 else if Last change enhanced data sink then
28 Increase number of tasks of source by 1;
29 end
30 else if Last change enhanced data source then
31 foreach operator do Add tasks according to

−→
R and the operator’s position in the

topology;
32 end
33 else if Last change throttled the data source then
34 Decrease throttle strength;
35 end
36 end
†We adopt a Two Sample T-Test to determine whether a throughput change is significant or not, more details
are given in Section 6.1 as a part of experiment setup.

Scaling up data source and data sinks works by adding new tasks to operators that
need to be further parallelized, but it also raises a question of how to map the updated
task graph to the underlying machines in order to achieve better resource utilization.
This is also known as the task placement and scheduling problem. There are several
policies available to decide the distribution of tasks across the platform, and certain
applications may require a particular policy to suit a very specific need (e.g. assigning

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:14 X. Liu et al.

a particular task to a particular machine due to licence restrictions). We therefore de-
sign the platform capability profiler to enable scheduling policies to be plugged in so
that it can be used in conjunction with various scheduling heuristics with different op-
timization targets, such as minimizing inter-node communication [Aniello et al. 2013;
Xu et al. 2014], reducing the average tuple processing time [Li et al. 2015], and being
resource-aware to ensure the capability of each task to handle its task load [Peng et al.
2015]. Since the focus of this work does not lie in task placement and scheduling, we in-
troduce our profiling approach in tandem with the widely adopted round-robin policy7

and apply it in a platform with homogeneous computational resources for ease of pre-
sentation. The round-robin policy is particularly suitable for homogeneous platforms
as tasks are evenly distributed among available machines to enable fault-tolerance
and load-balancing.

Algorithm 2 shows the interplay between performance evaluation and configura-
tion generation carried out by the profiler under the round-robin policy. Scaling data
sources is a relatively lightweight operation: it only requires the number of tasks for
the data source to be increased by 1, so that the application has one extra task pulling
data from the message queue and thus increasing the input rate. However, decision
about increasing the parallelism for a data sink operator depends on the type of oper-
ator and its position in the topology. For example, an operator should keep its number
of tasks unchanged if it is a non-parallel operator, or if it is non-scalable dominated by
logic-dependent operators as its input stream tends to be steady during the profiling
process. As for other types of operators,

−→
R indicates the extent of enhancement for

each operator.
Nevertheless, not every scaling effort, especially those applied for data sinks, can

guarantee improvements. The reason why scaling data sinks is even more difficult
than scaling data sources is that it has to exhaust current resources for additional
computation and coordination. Therefore, to meet the latency constraint, our profiler
performs a third operation on configuration, source throttle, which limits the size of
input stream by controlling the amount of data that is allowed to sojourn in the system.

The complexity of computation required for configuration generation is constant.
However, the profiling process that evaluates the effectiveness of a new configuration
is relatively time-consuming since performance measurement must wait until the ap-
plication is stabilized. To examine the number of profiling rounds required in the worst
case, we regard Algorithm 2 as a search algorithm that explores a vectored value space,
with each dimension confined by the actual parallelism degrees that can be seen in
the ideal configuration. Given the fact that every three consecutive profiling efforts
can increase the total number of used tasks at least by

∥∥∥−→R∥∥∥
1

through data sink en-
hancement (except for consecutive source throttles, which is rare), and that assigning
excessive parallelism degree to an operator would harm the application performance,
it is intuitive to deduce a conservative estimate that in the worst case there will be
no more than 3 ∗ nMaxp∥∥∥−→R∥∥∥

1

rounds of profiling. In the expression, n is the number of op-

erators in the topology, and Maxp represents the maximal parallelism degree among
all the operators. However, Maxp is unknown before the actual profiling, but it can be
approximated in practice by the number of threads able to run simultaneously in this
particular platform (by multiplying the number of available cores by the number of
thread(s) per core).

7http://grokbase.com/t/gg/storm-user/132fh5qyve/recommendations-for-setting-num-isolated-machines-num-workers-
parallelism-hint

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

http://grokbase.com/t/gg/storm-user/132fh5qyve/recommendations-for-setting-num-isolated-machines-num-workers-parallelism-hint
http://grokbase.com/t/gg/storm-user/132fh5qyve/recommendations-for-setting-num-isolated-machines-num-workers-parallelism-hint

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:15

4.3. Operator Capacity Profiling
The previous step of profiling divided the streaming application in two parts (data
sources and sinks), of which the parallel configurations of operators are collectively
adjusted based on the overall performance of the system. Such coarse modifications
may not be accurate enough to achieve the targeted configuration. Therefore, in the
third step, profiling is carried out at operator level through the individual evaluation
of performance of each operator. The goal of this step is to achieve finer granularity of
performance tuning.

Operator capacity, which is formally defined in Equation 2, is used to quantita-
tively evaluate the degree of utilization of operators in data sinks. In the equation,
Operator latency is the average time that a single datum would spend in this opera-
tor over a specific time period. The length of such time period is called Window size
and the amount of data processed in this period is denoted by Executed load. Thus,
capacity represents the percentage of the time in the observation time window that
the operator spent executing inputs. The closer to 1 is this value, the more likely the
operator is the bottleneck in our topology.

Capacity =
Operator latency ∗ Executed load

Window size
(2)

This step utilizes the same profiling environment used in the previous step. How-
ever, besides overall performance metrics such as throughput and latency, the profiler
in this stage also collects the capacity information from each operator for fine-grained
evaluation. The profiling strategy also resembles the previous one: the performance
evaluation phase sheds light on the system status and the possible bottleneck, and the
previous configuration change is revoked if it causes performance degradation. How-
ever, this process differs from the previous step in that it has only one operation, which
is increasing the number of tasks by 1 for the operator that has the highest capacity
and has not been enhanced nor revoked. If there is no performance improvement ob-
tained from enhancing the operator with the highest capacity, the operator that has
the second highest capacity is tested in the next round and so on.

There are two stopping conditions for the profiling. The first is when there are con-
secutive revocations observed indicating that recent scaling up efforts on candidate
operators have failed. The second condition is when all the measured operator laten-
cies approach the minimal processing latency MinLp by a factor k. We evaluate the
effect of diverse values of k in the performance of the profiling later in Section 6.4.

4.4. Recalibration Mechanism
The application of the above three profiling steps yields a specific parallel configura-
tion that builds a relation between provisioned resources and performance metrics.
However, such relation is perceived to be volatile, since the performance under the
same configuration may vary and the resulting configuration may need to be promptly
modified due to the live changes that happen to the streaming application or platform.
This section therefore discusses the recalibration mechanism, which repeats the profil-
ing process when necessary to keep the configuration and operator profiling up-to-date
with minimal adjustment cost.

In general, recalibration is triggered by any three types of changes: (i) resizing of
DSMS, which leads to a new platform to be profiled after the infrastructure layer is
dynamically scaled; (ii) re-deployment of the application, resulting from the alteration
of application topology and the manipulation of some critical parameters that would
greatly affect the application behaviour; and (iii) data-dependent variation, an uncon-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:16 X. Liu et al.

Control Flow
Data Stream
 Flow

Metric FlowNimbus

Worker Node Worker Node

Supervisor Supervisor

Worker
Process

Worker
Process

Metric Reporter Round Robin
Scheduler

MongoDB

Stepwise Profiler

Storm
API

Configuration
Modifier

Monitor Module

Fig. 8. The integration of the profiler prototype into Apache Storm.

trollable factor related to the characteristic of workload, causing performance to vary
even if the configuration remains unchanged.

For the first two causes, the recalibration decision is straightforward. If the platform
or application turn into a state that has not been previously profiled, all the profiling
steps are repeated. However, the process is more challenging when it comes to dealing
with data-dependent variation, as all the changes are independent of the platform and
application. We can safely assume that all data elements within the same stream are of
the same type, but the time and space complexity of execution may vary along with the
changing element size or the density of information contained. The Sentence Splitter,
in the word count topology, is a typical example to show the effect of data-dependent
variation: its process latency and relative size of output stream depend on the average
length of incoming tweets.

To deal with such variation, the recalibration mechanism requires a monitoring sys-
tem to oversee the degradation of performance during runtime. It continuously mon-
itors the length of the message queue, which indicates the capability of application
to handle a certain level of throughput that previously demonstrated in the profiling
phase, and the system latency, which examines if the user-specified latency constraint
is still satisfied. In order to reduce the frequency of adjustment, we adopt a threshold-
based method which postpones any recalibration action until the monitored values
have exceeded the predefined threshold for a specific period of time.

5. SYSTEM IMPLEMENTATION
The architecture of the stepwise profiling system, as shown in Figure 4, consists of two
main parts — the profiling environment and the stepwise profiler.

The setup of the profiling environment has been briefly introduced in Section 4.
More specifically, the Profiling Message Generator8 is a Java program that reads the
workload file on demand in order to emit a particular size of profiling stream. The Mes-
sage Queue connecting the streaming application to the Profiling Message Generator
is built with Twitter Kestrel9, a distributed queueing system that enables control-
lable message buffering. Developers could make use of the Thrift interface provided by
Kestrel to retrieve the length of message queue and determine whether the streaming
application has been overwhelmed by the profiling data.

As a specific DSMS was needed to enable the implementation and evaluation of the
prototype, Apache Storm was chosen. This is because it is an open source software

8https://github.com/xunyunliu/MessageGenerator
9https://github.com/twitter-archive/kestrel

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:17

(and thus has all the source code available and detailed on-line documentation), and
provides a built-in metric system and external configuration reader that facilitate the
implementation of the stepwise profiler.

Figure 8 describes the integration of the profiler prototype into Apache Storm. The
Stepwise Profiler module in the grey box are DSMS-independent, as it only interacts
with other components of the architecture to make profiling decisions. Therefore, it is
implemented as a stand-alone Java Program.

The other modules of the architecture interact directly with the DSMS to collect
information or apply changes, thus the implementation of these modules are DSMS-
dependent. The Metric Reporter component utilizes Storm’s built-in metric system
and the associated RESTful interface to collect performance information and publish
results. Such metrics are then periodically sent to MongoDB10 to facilitate tracking
of performance changes. The Monitor Module11, implemented as a Java program, in-
quires the MongoDB for the latest system status and reports it to the Stepwise Profiler
for decision-making. In this process, some performance metrics, like complete latency
(average time taken by a tuple and all its offspring to be completely processed by
the topology), number of data emitted, and operator capacity can be directly used in
the stepwise profiler. Some metrics, however, require certain post-processing in the
Monitor Module. For example, there is no default definition for throughput among the
built-in metrics. Thus, to avoid ambiguity, the Monitor Module calculates the overall
throughput of a streaming application based on the observed number of acknowledge-
ments or emitted data per unit of time, depending on whether the application adopts
reliable message processing or not.

We also utilize some useful features of Storm in the process of generating and ap-
plying new configurations. Specifically, Storm not only supports reading parallelism
setting of operators from an external configuration file, but also provides a command
line tool (Storm API) to manage the topology with additional operational parameters.
The stepwise profiler thus makes use of the Configuration Modifier component, which
is implemented as a script file, to pack up all the profiling decisions in a deployment
configuration file, and then invokes the command line tool to submit the application
with the updated deployment scheme for the next round of profiling. The round-robin
scheduler guarantees that tasks are evenly distributed across Worker Nodes and that
load is equally distributed among machines.

Another aspect relating to implementation is the management of operator states
during the scaling up process. We do not address dynamic stream rerouting and live
state migration since the Configuration Modifier relies on the rebalance command to
apply any deployment changes. This command, as a built-in Storm functionality, es-
sentially pauses the application during the redeployment and then restarts it from
scratch with the new configuration, following the so-called Pause and Resume proto-
col [Heinze et al. 2014a]. As our current prototype treats stateful operators the same
way as stateless operators in terms of scaling, the management of operator states is
not transparently handled by the profiling framework. Therefore, it is required that
stateful operators preserve their states at the application level when the rebalance
command is triggered, and these operators should also be initialized with the previous
states when the application is restarted. However, there are some advanced mecha-
nisms proposed in the literature that enable application-agnostic state management
and interruption-free operator scaling, which is discussed in Section 7.

10https://www.mongodb.com/
11https://github.com/xunyunliu/MonitorModule

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:18 X. Liu et al.

Op1 Op2 Op3 Op4

Op1

Op2 Op3 Op4 Op5

Op6

Op1 Op2

Op4 Op5

Op3

a) Linear b) Diamond c) Star

Fig. 9. Structure of the synthetic Micro-benchmark topologies.

6. PERFORMANCE EVALUATION
We have conducted three different sets of experiments to validate the effectiveness of
our prototype.

(1) The first experiment presented in Section 6.2 evaluates whether the stepwise pro-
filing effectively applies to a variety of streaming applications, and if it fulfils the
other goals discussed in Section 2.

(2) The second one in Section 6.3 assesses the scalability of our prototype and show-
cases its runtime overhead under relative large test cases.

(3) The last experiment in Section 6.4 investigates the effect of different parameters
on the profiler performance, based on which we suggest default preferences.

6.1. Experiment Setup
The experiment environment is set up on a private cloud running OpenStack. The envi-
ronment consists of three IBM X3500 M4 machines, and each machine is equipped with
2 x Intel Xeon E5-2620 Processor (6 core@2.0GHz), 64 GB RAM and 2.1 TB HDD. The
virtual cluster deployed on the physical environment is composed of a control machine,
a ZooKeeper node and several processing nodes. The first two nodes are “m1.large” (4
VCPU and 8 GB RAM), while the rest of the processing nodes are “m1.medium” (2
VCPU and 4GB RAM per machine). The control machine host the Stepwise Profiler,
Profiling Message Generator, and the Message Queue components of the architecture
to avoid possible interference to the profiling result.

6.1.1. Test Applications. We adapt six streaming topologies as our evaluation appli-
cations12. These include three synthetic topologies (collectively referred to as Micro-
benchmark) and three real-world streaming applications: Word Count (WC), Synthetic
Word Count (SWC), and Twitter Sentiment Analysis (TSA). All applications are con-
figured with acknowledgements enabled in order to track the complete latency, and
they process the same type of workload to calculate comparable throughput. The pro-
filing stream used for performance test is recursively generated from a single work-
load file, which contains 159,620 tweets in JSON format collected from 24/03/2014 to
14/04/2014. In addition, these applications are carefully tuned to avoid out-of-memory
crash and other failures due to insufficient resource allocation, so that the only po-
tential consequence of improper configuration is suboptimal performance, rather than
abrupt termination of the application.

Micro-benchmark: the micro-benchmark topology is synthetically designed to eval-
uate how the stepwise profiler generalises to different topology structures. As shown
in Figure 9, it covers three common structure patterns: Linear, Diamond, and Star,

12In the following section, we use application and topology interchangeably to refer to the streaming logic
developed on Apache Storm.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:19

Op1 Op3 Op4 Op7 Op8 Op9 Op10 Op11

Op2 Op5 Op6

Fig. 10. Structure of the Twitter Sentiment Analysis (TSA) topology.

where an operator has (1) one-input-one-output, (2) multiple-outputs or multiple-
inputs, and (3) multiple-inputs-multiple-outputs, respectively.

In addition, the execute method of each operator is implemented in three different
patterns in order to reflect diverse time-space complexities. Some operators are (1)
CPU bound, as they invoke a random number generation method Math.random() 10000
times for each tuple received. Some are (2) I/O bound with only a JSON parse oper-
ation applied on the incoming tuple, so that they spend more time on waiting for I/O
operations rather than actually processing the current data. The rest of the opera-
tors are (3) Sojourn time-bond, which sleep for 5 ms upon any tuple receipt. These
operators are introduced to mimic the cases where an external service is requested to
complete the tuple transaction. Consequently, they demand almost no CPU and mem-
ory usages on the execution platform, but still consume a substantial sojourn time for
each incoming tuple to be processed.

All these operators have a function implemented to read the operator selectivity13

from the external configuration file. Higher selectivity can be specified to produce sat-
urated network usages, so that I/O bound operators could be overwhelmed by large
internal streams.

Word Count and Synthetic Word Count: the Word Count topology is illustrated in
Figure 3. The Synthetic Word Count topology adds a Waiting operator (a bolt14 in
Storm’s terminology) between the Kestrel Spout and the JSON Parser, where each in-
coming tuple is kept for 1 ms before being sent to the next operator. Therefore, WC and
SWC are actually two different implementations for the same streaming application.

Twitter Sentiment Analysis: we adapted this topology from a mature open-source
project hosted on Github15 with the structure shown in Figure 10. It has 11 bolts con-
stituting a tree-style topology that has 8 stages in depth. The processing logic of this
application is straightforward: once a new tweet is pulled into the system through
Kestrel Spout (Op1), it is firstly stored by a file writer (Op2) and examined by a lan-
guage detector (Op3) to identify which language it uses. If it is written in English, there
is a sentiment analysis bolt (Op4) that splits the sentence and calculates the senti-
mental score for the whole content using AFINN16, which contains a list of words with
their pre-computed sentiment valence from minus five (negative) to plus five (positive).
There are also several bolts to count the average sentiment result (Op5, Op6) and to
rank the most frequent hashtags occurring over a specific time window (Op7 ∼ Op11).

6.1.2. Evaluation Methodology. We use throughput and complete latency to quantita-
tively evaluate the performance of streaming applications. Higher monitored through-
put indicates higher performance potential, as long as the complete latency satis-
fies the desired target. In other words, if a streaming application has demonstrated
throughput T in the profiling environment, we can confidently assume that it has abil-
ity to process any throughput T

′
< T without violating the latency constraint, unless

13The selectivity is defined as the ratio between the number of output tuples produced and the number of
tuples consumed by this operator.
14Operators in Storm are called spouts—if they are data sources—or bolts otherwise.
15https://github.com/kantega/storm-twitter-workshop
16http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=6010

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

https://github.com/kantega/storm-twitter-workshop
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

1:20 X. Liu et al.

the profiling knowledge needs to be recalibrated. Therefore, to probe the maximum
sustainable throughput, the profiling environment feeds the applications with large
inputs, until the performance hits its highest stable point before recording it as the
observed value.

The measurement of performance metrics first requires the test application to be
deployed on the execution platform. Apart from complying with the generated configu-
ration, we also set the number of workers to one per machine and the number of tasks
to be the same as the number of executors, which conforms to the recommendation
of the Storm community17. All the topologies run for 10 minutes to enable sufficient
stabilization, and then performance data are collected every 30 seconds for 10 min-
utes, forming an array of 20 observations on throughput and latency. These settings
were chosen because we observed that the fluctuation among the average results of
repeat experiments did not exceed 3%, and the Lilliefors Test does not reject the null
hypothesis that the observations on throughput are normally distributed (at the 5%
significance level). However, other applications may require longer time to reach a
stable state, or a larger monitoring interval to avoid drastic but periodic throughput
variation.

As we have collected an array of throughput metrics in each profiling round, the sig-
nificant change mentioned in Algorithm 2 can be determined by a Two Sample T-Test
(at the 5% significance level) to determine if there is statistically significant difference
between the performance of previous and new configuration.

For completeness, Table II summarizes the parameter settings used for setting up
the stepwise profiler in our evaluation.

Table II. The parameter settings used by the stepwise profiler
in evaluations.

Parameters Values

Latency constraint (Ycon) 500 ms
Task load unit (slice) 0.3
Stopping coefficient (k) 2
Threshold for triggering reconfiguration (α) 0.9

6.1.3. Comparable Methods. We compare the stepwise profiling prototype with two ex-
isting scaling up approaches: the threshold-based method and Stela [Xu et al. 2016].

The threshold-based method adjusts the parallelism hint of each operator based on
its monitored capacity as formulated in Equation 2, in contrast to those in the liter-
ature that set up thresholds over the CPU utilization of worker nodes [Heinze et al.
2014b; Gulisano et al. 2012]. The scaling up threshold in our experiment is set to be 0.8
and we reduce the capacity of congested operators by gradually increasing their par-
allelism. In this sense, it may take several rounds to complete the scaling up process:
the application is deployed with no parallelism configured18 at the beginning. In the
following rounds, the most overloaded operator will be provided with an extra task in
an attempt to rectify the congestion and optimize performance.

Stela scales up the streaming applications with the same goal of optimizing post-
scaling throughput. In contrast to the threshold-hold method that examines only the
operator capacity for bottleneck detection, Stela prioritizes those congested yet influen-
tial operators in the scaling up process by calculating the ETP (Effective Throughput
Percentage) metric [Xu et al. 2016]. Furthermore, it allows the parallelism degree of

17https://storm.apache.org/documentation/FAQ.html
18By default, Apache Storm initializes each operator in the topology with one task for execution.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

https://storm.apache.org/documentation/FAQ.html

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:21

multiple operators to be adjusted in a single monitoring round, thus greatly reducing
the time span of scaling up process. However, Stela is initially designed for on-demand
elasticity, hence some changes are required to make it comparable with our approach:

(1) The scaling out process is omitted as we intend to optimize the application perfor-
mance on a pre-configured cluster. All infrastructural resources are made available
to Stela from the beginning of the scaling up process.

(2) A single monitoring round of Stela corresponds to an on-demand scaling request
in its original form, which may involve multiple scaling up iterations. During each
iteration, Stela calculates the ETP for all operators and assigns a new task to the
operator with the highest ETP. Before proceeding to the next iteration, the table
of ETP is updated with projected values that estimate the consequence of scaling,
such as the projected input rate and the processing rate of the targeted operator.

(3) Since the estimation of ETP is prone to error propagation, we limit the maximum
number of scaling up attempts in a monitoring round to m, which is the number of
worker nodes available at the infrastructure level. In this way, the efficacy of the
scaling algorithm is assured as the table of ETP is revised with monitored data
every m iterations; and the risk of over-scaling is controlled since each machine
will be assigned with no more than one new task in a single monitoring round.

6.2. Applicability Evaluation
In the applicability experiment, all the topologies are executed in 6 worker nodes.
We configured the micro-benchmark topologies with different resource complexities in
order to examine how application diversity affects the performance optimization pro-
cess. Specifically, the Linear topology incorporates only CPU-bound operators so that
the whole application is bound by available CPU resources; while the Star topology
consists of only I/O bound operators, causing its performance to be bound by commu-
nication capability19. The Diamond topology, on the other hand, is a hybrid stream-
ing application that includes all sorts of operators (1 CPU bound, 1 I/O bound, and 2
Sojourn time-bound) in the intermediate tier, making its bottleneck more difficult to
identify and resolve in the scaling up process.

The results in Figure 11 show that the stepwise profiler successfully scales up the
targeted topologies. In particular, the Linear topology reaches its maximum through-
put at 1876 with the parallelism set as (1, 2, 2, 2)20, which is 95.7% higher than its initial
throughput performance yielded by (1, 1, 1, 1). It took 4 rounds for the scaling up pro-
cess to converge: the stepwise profiler tried the configuration of (1, 3, 3, 3) at round 3,
but it then rejected such configuration change due to the observed performance degra-
dation. Note that the operator capacity profiling is entirely omitted in this scaling up
process, as the measured operator latencies have all fallen into the vicinity of the mon-
itored MinLp by a factor of 2.

Being I/O intensive in nature, the Star topology requires much higher parallelism
settings to enable satisfactory performance, which consequently leads to a longer scal-
ing up process. In our evaluation, the scaling up process took 6 rounds to finish, with
the parallelism finally set as (3, 3, 48, 24, 24) delivering 64% higher throughput than the
first round. Thank to the homogeneity of operator implementation, there is no need to
fine tune the operator capacities as the stopping condition on latency has been met.

The Diamond topology, in contrast, spent 3 rounds in the third step to further scale
up the I/O bound operator (Op3). During the process of platform capability profiling,
stepwise profiler successfully determines the right parallelism for CPU-bound and So-

19For I/O bound topologies (e.g. Star), we set Ycon to 100 ms to reflect stricter timeliness requirement.
20From left to right, each number corresponds to the number of tasks of each operator in the Linear Topology.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:22 X. Liu et al.

1 2 3 4

Profiling Rounds

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

Stepwise
Stela
Threshold

(a) Linear Topology (Sythetic, CPU-bound)

1 2 3 4 5 6

Profiling Rounds

3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

Stepwise
Stela
Threshold

(b) Star Topology (Sythetic, I/O-bound)

1 2 3 4 5 6 7 8

Profiling Rounds

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

Stepwise
Stela
Threshold

(c) Diamond Topology (Sythetic, Hybrid)

1 2 3 4 5

Profiling Rounds

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

7400

7600

7800

8000

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

Stepwise
Stela
Threshold

(d) Word Count (WC)

1 2 3 4 5 6 7 8 9

Profiling Rounds

2700

2900

3100

3300

3500

3700

3900

4100

4300

4500

4700

4900

5100

5300

5500

5700

5900

6100

6300

6500

6700

6900

7100

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

Stepwise
Stela
Threshold

(e) Sythetic Word Count (SWC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Profiling Rounds

700

800

900

1000

1100

1200

1300

1400

1500

1600

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

Stepwise
Stela
Threshold

(f) Twitter Sentiment Analysis (TSA)

Fig. 11. Scaling up testing applications on 6 processing nodes, the X axis represents a series of profiling
rounds and the Y axis compares the throughput resulting from different configurations. In each profiling
round, we use 3 boxplots that each contains 20 readings of throughput to denote the observation variances.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:23

journ time-bound operators; however, it underestimates the number of tasks for Op3
and causes it to be the throughput bottleneck. The reason of insufficient scaling is that
Equation 1 made a conservative decimal conversion by using slice of 0.3, which pre-
vents Op3 from scaling more than 4 times faster than the other operators. We will shed
more light on the effect of parameter selection in Section 6.4.

In addition, by interpreting the scaling up process of real-world streaming appli-
cations, we conclude that our method is consistently better than the other two scaling
approaches in the following three aspects. Firstly, stepwise profiling exploits the inher-
ent feature of a streaming application and thus has a more reasonable starting point
of profiling comparing to the other two baseline methods, which by contrast determine
the initial configuration only based on the topology structure. Figure 11 illustrates that
the application feature profiling for WC, SWC, and TSA improves the performance by
45%, 21.1% and 25% at the beginning, respectively.

Secondly, as platform capability profiling collectively adjusts the parallelism hints
for a set of operators, it significantly enhances the performance gains obtained from the
first few profiling rounds. On average, the relative performance improvement observed
from the first four rounds in our method is 2.48 times as large as that of Stela, and
11.63 times compared to that of the threshold-based method. Besides, despite having
the ability to tune multiple parallelism hints in a single round, Stela’s estimation-
based algorithm could lead to incorrect scaling decision, e.g. it added new tasks to
logic-dependent operators and caused performance degradation at round 10 in Figure
11f. To make things worse, there is no reversal mechanism to rollback the wrong move.

Finally, the stopping condition introduced in Section 4.3 greatly limited the number
of profiling rounds. Specifically, stepwise profiling stops trying new configuration in
TSA because there are successive revocations that show increasing parallelism hint
no longer benefits the performance. In WC and SWC, the profiler execution terminates
when the latencies for each bolt dropped into a range of (0, 2∗MinLp], which indicates
that the application has been sufficiently scaled up. In the end, our approach is 34.1%,
40.1%, 31.9% better than the best alternative in terms of the throughput resulted from
the final configuration, respectively.

With the performance information profiled, the quality of different topology imple-
mentations in terms of their performance potentials can be easily observed. In this
case, SWC is consistently worse than WC as the former implementation only reaches
86.8% throughput of the latter and it takes more effort (9 rounds vs 5 rounds) to probe
a reasonable configuration.

6.3. Scalability Evaluation
We explore the scalability of our stepwise profiling prototype in two dimensions. The
first dimension is topology complexity, which examines how the increasing number of
operators in the topology affects the scaling up process. The other dimension is plat-
form size, which checks if the prototype is able to deliver a reasonably higher post-
scaling performance using more resources. Meanwhile, we also compare stepwise pro-
filing with Stela in terms of the minimal resources needed to reach a specific perfor-
mance target.

In the first experiment, we run the Linear topology with various types of operators
on 6 worker nodes. The topology depth is further extended to 6, 8 and 12 in order
to construct a more complex structure. Results in Figure 12a show that increasing the
topology chain leads to a longer operator capacity profiling process, but the overall pro-
filing effort does not scale linearly with the number of operators. This is because the
monitored MinLp also increases along with the topology complexity and contributes to
the timely termination of the profiling process. In fact, we observed that the stopping
condition on latency is satisfied by most operators at the end of the platform capabil-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:24 X. Liu et al.

1 2 3 4 5 6 7 8 9 10 11 12 13

Profiling Rounds

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

6 operators
8 operators
12 operators

(a) Linear Topology (Sythetic, Hybrid)

1 2 3 4 5 6 7 8 9 10

Profiling Rounds

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

13000

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

6 worker nodes
10 workers nodes
14 workers nodes

(b) Word Count (WC)

Fig. 12. Scalability evaluation of the stepwise profiler. The X axis represents a series of profiling rounds
and the Y axis compares the throughput resulting from different configurations.

ity profiling, and only I/O bound operators demand further adjustment of capacity as
their MinLp are relatively small and hard to approach. This observation enables the
conclusion that the parameter selection process is application-dependent and a higher
k should be set for I/O bound topologies.

Additionally, this experiment showcases that the increasing complexity of target ap-
plication compromises the performance gain from profiling, with the monitored im-
provement being 33.5%, 24%, 20.5% in the three test cases, respectively. Therefore, a
larger platform is required for complex streaming topologies to obtain satisfactory per-
formance.

In the second experiment, we run the Word Count topology on 6, 10 and 14 worker
nodes, respectively. Note that by using 14 worker nodes we can still guarantee that
one virtual CPU corresponds to a physical core so as to avoid the interference of CPU
overbooking. The results in Figure 12b demonstrate that the application features pro-
filed in the first step, i.e. MinLp and RSS, are nicely maintained on larger platforms,
therefore the process of platform capability profiling is accordingly extended to provide
higher parallelism for different operators. However, the stepwise profiler is not able to
achieve linear growth of performance using more resources. This is because other fac-
tors, such as task location and concurrency settings, also influence the throughput
outcome, but they are not fine-tuned by the profiler due to the hardness of modelling.

Using WC as the test topology, we also applied Stela and stepwise profiling on an
increasing number of nodes, from 2 to 14, to determine the performance limits of the
topology given different resources. Both methods were executed with the same itera-
tions to ensure fairness, and the results of scaling shed light on the minimal resource
provision needed for the test application to reach a specific throughput target.

Figure 13 shows that the stepwise profiling is able to reduce resource usage by up to
57.1%. For example, stepwise profiling can achieve a target of 6000 tweets processed
per second using only 4 nodes. On the other hand, Stela suggests 8 nodes to process
such stream without breaking SLA, which results in a significant resource wastage.

Additionally, it took 200 minutes for the stepwise profiler to complete the scaling up
process of WC on 16 machines (2 for control and coordination and 14 for execution).
Given that a configuration trial in each round runs for 20 minutes, and that 10 config-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:25

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Throughput Target (Tuples/sec)

0

2

4

6

8

10

12

14

16

N
um

be
r

of
 P

ro
ce

ss
in

g
N

od
es

 R
eq

ui
re

d

Stepwise Profiling
Stela

Fig. 13. Relationship between the throughput target and required resources to handle it without latency
violation.

urations are evaluated, the overhead incurred by the profiling algorithm in the whole
process is negligible.

6.4. System Parameters Evaluation
In this experiment, we evaluate the influences of three parameters in the performance
of stepwise profiler. These include the user-specified latency constraint Ycon, the task
load unit slice and the stopping coefficient k. In particular, TSA is executed on 4 pro-
cessing nodes. When a particular parameter is being examined, the others were set
to their default values. Table III describes the evaluated and default values for each
parameter.

Table III. Evaluated parameters and their values. Default val-
ues are showed in bold.

Parameters Values

Latency constraint (Ycon) 300 ms, 500 ms, 700 ms
Task load unit (slice) 0.1, 0.3, 0.5
Stopping coefficient (k) 1.5, 2, 3

Results show that relaxing Ycon does not necessarily increase the throughput. In fact,
it encourages the profiler to try further data source scaling operations in the second
profiling step, checking if the bottleneck lies in insufficient data supply. As shown in
Figure 14a, the third data point marked with a circle denotes the operation that scales
up the data source, but it is revoked because the overall throughput is impaired by
this change. On the other hand, the throughput would be significantly affected if Ycon

were set to an overly small value. As indicated by the third data point marked with a
square, our method has to throttle the data source at the end of the second profiling
step to meet the latency requirement, and the following rounds in the third step do not
compensate the performance degradation due to the strict latency constraint.

The behaviour of the platform capability profiling mainly depends on the value of
slice. When slice increases from 0.3 to 0.5, both the starting point and the performance
gain from scaling are worse than the default case, reaching only 90.9% and 79.7% of the
default case performance, respectively. This is because, in this case,

−→
R is no longer able

to describe the proportion of different operators, which in turn causes heavy bottleneck
in bolts in the whole topology. By contrast, a value of slice that is too small exaggerates

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:26 X. Liu et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Profiling Rounds

300

400

500

600

700

800

900

1000

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

Y
con

 = 500 ms

Y
con

 = 700 ms

Y
con

 = 300 ms

(a) Varying Ycon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Profiling Rounds

300

400

500

600

700

800

900

1000

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

slice = 0.3
slice = 0.5
slice = 0.1

(b) Varying slice

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Profiling Rounds

300

400

500

600

700

800

900

1000

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

k = 2
k = 3
k = 1.5

(c) Varying k

Fig. 14. Influence of different parameters on the performance of stepwise profiling. For better readability,
we only plot the average of throughput in each profiling round.

this proportion and makes each scaling attempt more extreme. Data points marked
with squares in Figure 14b show that, even though the profiler managed to improve
the performance of the starting point against the normal case, the following scaling
trials in the second step all failed because of over-scaling — too many tasks were being
added each time.

Variation of the parameter k mainly affects the number of rounds in the operator
capacity profiling. Figure 14c shows that, when k changes from 2 to 3, the whole third
step of profiling is omitted at round 7 because each operator satisfies the stopping con-
dition, though only a suboptimal configuration is obtained in this case. On the contrary,
when k is decreased to 1.5, more operators are involved in the third step, which causes
a longer series of performance fluctuation. Note that more rounds of profiling in the
third step do not guarantee a better throughput due to the nature of greedy heuristics.

7. RELATED WORK
In summary, our work introduces a controlled profiling environment allowing evalua-
tion of different configurations, with the objective of finding and employing a tailored

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:27

Streaming Application Deployment

Task
Parallelization

Task Allocation &
Scheduling

Parameter
Tuning

Decide the number of
tasks to be scheduled

Verify the rationality

Facilitate the coordination
of application and DSMS

Fig. 15. Three processes of deploying a streaming application on the operator-based DSMS running in a
cloud and cluster environment. Text in italic describes the interrelation between them.

deployment plan to capture relevant characteristics of both the application and target
execution platform. Since our research goal is to achieve performance oriented de-
ployment for applications on operator-based DSMS, and the adopted method falls into
the broad scope of application profiling, this section reports relevant works in these
two fields—performance oriented deployment and application profiling. There is also
a line of work applicable to the previous generation of DSMS that focused on tuning
performance without changing the semantic of a streaming application. Therefore, we
succinctly review them and summarize how performance optimization is achieved on
other types of DSMS.

7.1. Performance Oriented Deployment
As shown in Figure 15, there are three tightly coupled processes involved in streaming
application deployment once the target cluster or cloud environment has been provi-
sioned: (i) task parallelization, which involves decision of the parallelism degree for
the logic DAG, such that each abstract operator is translated into a certain number
of tasks to conduct real data operations; (ii) task allocation & scheduling, which in-
volves allocation and scheduling of tasks among participating compute nodes; and (iii)
parameter tuning, which concerns fine-grained adjustment of available parameters for
better coordination of the application and the platform.

Only a handful of works investigated the task parallelization problem. Researchers
in IBM [Schneider et al. 2009; Schneider et al. 2012; Gedik et al. 2014] tried to auto-
mate this process using a compiler and runtime system that is capable of identifying
and levering potential data-parallel regions for applications on System S [Jain et al.
2006]. But instead of altering the parallelism to improve the application performance,
their work mainly focused on addressing the safety challenge related to parallelization,
which has already been handled by the implementation of state-of-the-art DSMSs. Fis-
cher et al., who abstract the streaming application as a black box with an unknown per-
formance function, proposed another similar work that regards the task parallelization
as only a part of parameter tuning [Fischer et al. 2015]. Though the adopted Bayesian
optimization method has demonstrated its effectiveness through extensive evaluation,
it would lead to an inherent lengthy convergence process compared to our stepwise
profiling approach in which operators are heuristically parallelized with insights ob-
tained from the queuing model.

Elasticity in DSMSs has received increasing research attention as it enables cost-
efficient handling of workload variations. Some works explored dynamically scale
out/in streaming applications through the adjustment of parallelism settings as well as
tuning relevant parameters. DRS is a resource scheduler that dynamically decides the
parallelism hint for each operator based on queueing theory, with the goal of minimiz-
ing the total sojourn time of an average input [Fu et al. 2015]. However, it targets only

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:28 X. Liu et al.

computation-intensive applications. Lohrmann et al. [Lohrmann et al. 2015] continu-
ously rebalance the topology with new configurations according to a proposed latency
model, and they double the parallelism of any operator found to be a bottleneck. Nev-
ertheless, the proposed bottleneck resolving method is coarse-grained and may lead to
resources wastage. Heinze et al. compared three different scaling techniques in terms
of the quality of the produced scaling decisions, and the results demonstrated that
reinforcement learning is more adaptive and robust than the threshold-based alterna-
tives [Heinze et al. 2014b]. Hidalgo et al. combined the threshold-based method with
the Markov chain model to dynamically change the operator parallelism, so that the
short-term and mid-term workload variations can be handled with reactive and pre-
dictive approaches, respectively. [Hidalgo et al. 2017]. Besides, realizing elasticity for
stateful operators requires non-trivial efforts to handle issues such as stream rerouting
and state migration. While the adopted pause-and-resume strategy is commonly seen
in the literature [Castro Fernandez et al. 2013; Cardellini et al. 2016; Madsen et al.
2016], there are also advanced protocols for operator movement and state management
that allow for interruption-free elasticity [Wu and Tan 2015; Matteis and Mencagli
2017; Ravindra et al. 2017]. In future work, these techniques can be integrated in
our prototype to improve its responsiveness against workload burst. As for parameter
tuning, Das et al. [Das et al. 2014] proposed a control algorithm to automatically de-
termine the most suitable batch for a given state, while online parameter optimization
has been investigated by Heinze et al. to deal with the situation where the application
needs to be dynamically scaled as a reaction to workload changes [Heinze et al. 2015].
Our target is different to all those above as we try to determine the configuration for
any streaming application given the platform that maximizes the throughput under
latency constraint.

In contrast, the task allocation and scheduling problem has received much more
attention from the research community. Aniello et al. pioneered this area with two
scheduling algorithms on Apache Storm: the off-line version makes all the scheduling
decisions through a static analysis of the logic DAG, while the on-line version regu-
larly collects runtime information to sort all the communicating pairs of tasks, with
an attempt to sequentially co-locate them in the same node to reduce communication
cost [Aniello et al. 2013]. Inspired by this idea, many works extended the on-line algo-
rithm by adding some other aspects into consideration, such as scheduling overhead,
resource awareness and energy efficiency. Chatzistergiou et al. proposed a linear time
task allocation algorithm to adaptively reconfigure task locations in the presence of en-
vironment changes, resulting in a significant improvement from the existing quadratic
time solutions [Chatzistergiou and Viglas 2014]. Fischer et.al. presented an applica-
tion agnostic algorithm that supports scheduling of large-scale task graphs with regard
to the communication pattern, the problem of minimizing inter-node messages is thus
translated into a graph partitioning problem which can be solved by the use of METIS
algorithm [Fischer and Bernstein 2015].

On the other hand, there are also some papers that explored the area of resource
aware scheduling and put an emphasis on worker node consolidation. The algorithm
used in T-Storm [Xu et al. 2014] tries to minimize both inter-node and inter-process
traffic while avoiding overloading the dwindled worker nodes. Similarly, Peng et al.
[Peng et al. 2015] considered the task scheduling as a variation of the Knapsack prob-
lem with several hard/soft resource constraints, so that it can be solved by the appli-
cation of linear programming given that the user has provided the resource demand
and availability information. Apart from the common target of reducing communica-
tion cost, Re-Stream, an energy-efficient resource scheduling mechanism by Sun et
al., proposed the minimization of energy consumption as long as the response latency
meets SLA requirements. This is achieved by an analytic model that depicts the rela-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:29

tionship among energy consumption, response time, and the resource utilization [Sun
et al. 2014; Sun et al. 2015]. Our work can be used along with these methods above as
none of them address the issue of task parallelization.

Besides cluster and cloud environments that are the target of our approach, the
problem of deploying streaming application on multi-core systems and distributed
networks has also been discussed by several works. Hormati et al. [Hormati et al.
2009] proposed a framework that dynamically adapts applications to the changing
characteristics of the multi-core resources in order to maximize the throughput, us-
ing a hybrid approach of static compilation and dynamic configurations adjustments.
Similarly, Suleman et al. [Suleman et al. 2010] introduced a framework to tune the
parallelism for each stage in a processing pipeline using a hill-climbing algorithm that
can both save time and reduce the number of used cores. As for network deployment,
Cardellini et al. [Cardellini et al. 2015] extended Apache Storm with a self-adaptive
distributed scheduling mechanism, which allows execution of streaming applications
on a geographically distributed environment with a certain level of QoS guarantee.

7.2. Application Profiling
Application profiling is a technique that actively extracts and evaluates the charac-
teristics of applications, for example, the space or time complexity, to facilitate the
use of computing resources. The profiled data sets can be either low-level usage traces
of CPU, memory, and network bandwidth, or high level metrics that are part of ap-
plication SLA, such as throughput, latency and fault-tolerance ability [Weingartner
et al. 2015]. In order to make sure that the application profile would accurately reflect
resource needs, the profiling process is normally conducted in a dedicated profiling en-
vironment following the MAPE-K autonomic loop (Monitor, Analyze, Plan, Execute -
Knowledge) [Kephart and Chess 2003], which enables controllable organization of in-
put data and eliminates variation factors that would affect the result collection and
analysis.

Most of the state-of-the-art programming IDEs, such as Microsoft Visual Studio and
Eclipse, provide tools to aid in determining bottlenecks in the code that affect the over-
all performance of a program. However, the research community has gone way beyond
code-level performance profiling. Urgaonkar et al. [Urgaonkar et al. 2002] investigated
the overbooking problem by the use of application profiling, which helps to deliver an
accurate estimate of resource needs for application components co-located on shared
hosts. Do et al. [Do et al. 2011] achieved better virtual machine placement with a
performance prediction model derived from the application profile. To obtain higher
profiling accuracy, they identify background load, which is the interference of other ap-
plications into consideration. Shen et al. [Shen et al. 2015] used profiling to automate
the detection of performance bottleneck for web applications with a large set of input
parameters. Similar to our work, the proposed profiling method is able to heuristically
search the best configuration that maximizes the objective performance function. Qian
et al. [Qian et al. 2011] developed a tool that profiles the cross-layer interaction within
mobile applications, aiming to better reveal the performance and energy bottlenecks
hidden in the inefficient resource usages. Still, our work is different to them in that
we adopt the profiling method to guide the deployment process of streaming applica-
tion, while the above-mentioned models mostly target batch-oriented (MapReduce) or
interactive-oriented (web and mobile) applications and thus cannot be directly applied
in streaming applications.

It is also worth mentioning that we have carefully designed the stepwise pro-
filer to avoid DSMS lock-in. Besides Apache Storm, there are many operator-
based DSMSs that support general purpose stream processing, including Microsoft
TimeStream [Qian et al. 2013], Apache Samza, Apache Flink [Lohrmann et al. 2014],

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:30 X. Liu et al.

and Twitter Heron [Kulkarni et al. 2015]. None of them has a built-in feature to auto-
matically decide the parallel configuration for a particular application, and thus all of
them can benefit from the proposed profiler.

7.3. Other Performance Optimization Techniques
It has been more than a decade since the first generation DSMSs, including Aurora
[Abadi et al. 2003], Niagara [Chen et al. 2000] and Telegraph [Chandrasekaran et al.
2003], were introduced to facilitate the development and deployment of streaming ap-
plications. Along with the increasing adoption of DSMS, various optimization tech-
niques have been developed to improve the performance of applications without chang-
ing their topology or semantics.

Operator placement optimization, for example, is a process of assigning operators
to specific hosts and cores to reach a trade-off between communication cost and re-
source contention. Though it is still a kind of adjustment in application layout rather
than spreading and scheduling tasks (as discussed in Section 7.1), operator placement
in previous generation DSMS regards each operator as an indivisible entity that can
only appear in one place at a time. In this context, Gordon et al. designed a software-
programmable substrate capable of generating custom communication code to reduce
message hops when placing operator on multi-core systems [Gordon et al. 2002]. Auer-
bach et al. proposed a placement mechanism to guarantee that operators compiled for
an FPGA will always be placed on hosts with FPGAs [Auerbach et al. 2010]. In addi-
tion to resource matching, Wolf et al. [Wolf et al. 2008] considered other constraints
during the placement process, such as licensing and security requirement.

Load balancing is another commonly used optimization technique to evenly dis-
tribute workload across available resources. This requires either a balanced opera-
tor placement plan or a runtime mechanism to dynamically assign stream tuples to
operators. As examples of these two approaches, Xing et al. migrated conflicting op-
erators that experience load spikes at the same time to separate locations to avoid
resource contention and thus improving load balance [Xing et al. 2005], while Amini
et al. [Amini et al. 2006] discussed the use of back-pressure in System S to compensate
skews found in runtime.

However, these optimization techniques are no longer applicable to state-of-the-art
streaming applications built on top of operator-based DSMS, as the implementation of
DSMS has greatly evolved towards scalability and robustness, causing operator place-
ment and load balancing to rely heavily on the parallelization and scheduling of tasks
that constitute the operator.

8. CONCLUSIONS AND FUTURE WORK
We proposed a streaming application profiler that consists of three steps, namely (i)
application feature profiling, which aims to identify the complexity and task load for
each operator; (ii) platform capability profiling, which endeavours to scale up the appli-
cation with the knowledge learned from the previous step; and (iii) operator capacity
profiling, which makes necessary amendments on fine-grained level to further improve
performance of the application. Our profiler can be used to scale up streaming appli-
cation, build the relationship between the underlying resources and the performance
metrics, and further evaluate the choice of resource provision. An evaluation of a pro-
filer prototype applied to three real world applications showed that our approach is
able to automatically improve the throughput up to 40.1% compared to Stela, a state-
of-the-art alternative scaling approach.

As for future work, we plan to devise auto-scaling policies on top of the profiling
results, which enables dynamic adjustment of provisioned resources according to real-
time performance requirements of a variety of workloads. Since responsiveness is a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:31

critical criterion for realizing runtime-adaptation, the envisioned auto-scaling policies
should be built on top of interruption-free scaling mechanisms such as dynamic stream
rerouting and live state migration. Deploying the streaming applications on the cloud
and exploiting the use of VM with different configurations are also on our future plan.
A distinct advantage of using cloud resources is that it supports resource customiza-
tion. Therefore, there is a great potential in performance optimization to place dif-
ferent operators on tailored cloud instances that fit their special needs, such as host-
ing computation-intensive operators on fast CPU nodes and placing operators with
intensive intercommunication in the same virtual node to minimize communication
overhead. We would also like to leverage different cloud pricing models (On-Demand,
Reserved, Spot) with the aim of minimizing the monetary cost of stream processing,
making cloud a preferable platform for deployment of streaming applications.

REFERENCES
Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael

Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003. Aurora: A New Model and Architecture for Data
Stream Management. The VLDB Journal 12, 2 (Aug. 2003), 120–139.

Lisa Amini, Navendu Jain, Anshul Sehgal, Jeremy Silber, and Olivier Verscheure. 2006. Adaptive Control
of Extreme-scale Stream Processing Systems. In Proceedings of the 26th IEEE International Conference
on Distributed Computing Systems (ICDCS ’06). IEEE Computer Society, 71–77.

Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. 2013. Adaptive online scheduling in storm. In
Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems (DEBS ’13).
ACM, 207–218.

Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. 2010. Lime: A Java-compatible and
Synthesizable Language for Heterogeneous Architectures. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’10). ACM,
89–108.

Paolo Bellavista, Antonio Corradi, Andrea Reale, and Nicola Ticca. 2014. Priority-Based Resource Schedul-
ing in Distributed Stream Processing Systems for Big Data Applications. In Proceedings of the 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC ’14). IEEE, 363–370.

Michael Cammert, Christoph Heinz, Jurgen Kramer, Bernhard Seeger, Sonny Vaupel, and Udo Wolske.
2007. Flexible Multi-Threaded Scheduling for Continuous Queries over Data Streams. In Proceeding of
the 23rd IEEE International Conference on Data Engineering Workshop (ICDE ’07). IEEE, 624–633.

Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli. 2015. Distributed QoS-aware
Scheduling in Storm. In Proceedings of the 9th ACM International Conference on Distributed Event-
Based Systems (DEBS ’15). ACM, 344–347.

Valeria Cardellini, Matteo Nardelli, and Dario Luzi. 2016. Elastic Stateful Stream Processing in Storm. In
Proceedings of the 2016 International Conference on High Performance Computing Simulation (HPCS).
IEEE, 583–590.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch. 2013. Integrating
Scale out and Fault Tolerance in Stream Processing Using Operator State Management. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD ’13). ACM, 725–
736.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei
Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred Reiss, and Mehul A. Shah. 2003. TelegraphCQ:
Continuous Dataflow Processing. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’03). ACM, 668–668.

Andreas Chatzistergiou and Stratis D. Viglas. 2014. Fast Heuristics for Near-Optimal Task Allocation in
Data Stream Processing over Clusters. In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management (CIKM ’14). ACM, 1579–1588.

Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’00). ACM, 379–390.

Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive Stream Processing Using Dy-
namic Batch Sizing. In Proceedings of the ACM Symposium on Cloud Computing (SOCC ’14). ACM,
1–13.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

1:32 X. Liu et al.

Anh Vu Do, Junliang Chen, Chen Wang, Young Choon Lee, A.Y. Zomaya, and Bing Bing Zhou. 2011. Pro-
filing Applications for Virtual Machine Placement in Clouds. In Proceedings of the IEEE International
Conference on Cloud Computing (CLOUD ’11). IEEE, 660–667.

Lorenz Fischer and Abraham Bernstein. 2015. Workload Scheduling in Distributed Stream Processors using
Graph Partitioning. In Proceedings of the 2015 IEEE International Conference on Big Data (BigData
’15). IEEE Computer Society, 124–133.

Lorenz Fischer, Shen Gao, and Abraham Bernstein. 2015. Machines Tuning Machines: Configuring Dis-
tributed Stream Processors with Bayesian Optimization. In Proceedings of the 2015 IEEE International
Conference on Cluster Computing (CLUSTER ’15). IEEE, 22–31.

Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Marianne Winslett, Yin Yang, and Zhenjie Zhang. 2015. DRS:
Dynamic Resource Scheduling for Real-Time Analytics over Fast Streams. In Proceedings of the IEEE
35th International Conference on Distributed Computing Systems (ICDCS ’15). IEEE, 411 – 420.

Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2014. Elastic Scaling for Data Stream
Processing. IEEE Transactions on Parallel and Distributed Systems 25, 6 (June 2014), 1447–1463.

Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Andrew A. Lamb, Chris
Leger, Jeremy Wong, Henry Hoffmann, David Maze, and Saman Amarasinghe. 2002. A Stream Com-
piler for Communication-exposed Architectures. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS X). ACM, 291–
303.

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente, and Patrick Valduriez.
2012. StreamCloud: An Elastic and Scalable Data Streaming System. IEEE Transactions on Parallel
and Distributed Systems 23, 12 (Dec. 2012), 2351–2365.

Thomas Heinze, Leonardo Aniello, Leonardo Querzoni, and Zbigniew Jerzak. 2014a. Cloud-based Data
Stream Processing. In Proceedings of the 8th ACM International Conference on Distributed Event-Based
Systems (DEBS ’14). ACM, 238–245.

Thomas Heinze, Valerio Pappalardo, Zbigniew Jerzak, and Christof Fetzer. 2014b. Auto-scaling Techniques
for Elastic Data Stream Processing. In Proceedings of the 8th ACM International Conference on Dis-
tributed Event-Based Systems (DEBS ’14). ACM, 318–321.

Thomas Heinze, Lars Roediger, Andreas Meister, Yuanzhen Ji, Zbigniew Jerzak, and Christof Fetzer. 2015.
Online Parameter Optimization for Elastic Data Stream Processing. In Proceedings of the 6th ACM
Symposium on Cloud Computing (SoCC ’15). ACM, 276–287.

Nicolas Hidalgo, Daniel Wladdimiro, and Erika Rosas. 2017. Self-adaptive Processing Graph with Operator
Fission for Elastic Stream Processing. Journal of Systems and Software 127 (2017), 205 – 216.

Amir H. Hormati, Yoonseo Choi, Manjunath Kudlur, Rodric Rabbah, Trevor Mudge, and Scott Mahlke.
2009. Flextream: Adaptive Compilation of Streaming Applications for Heterogeneous Architectures. In
Proceedings of the 18th International Conference on Parallel Architectures and Compilation Techniques
(PACT ’09). ACM, 214–223.

Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. 2013. Elastic Stream Processing in the
Cloud. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3, 5 (Sept. 2013), 333–
345.

Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park, Philippe Selo, and Chitra Venka-
tramani. 2006. Design, Implementation, and Evaluation of the Linear Road Benchmark on the Stream
Processing Core. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD ’06). ACM, 431–442.

Jeffrey O. Kephart and David M. Chess. 2003. The Vision of Autonomic Computing. Computer 36, 1 (Jan.
2003), 41–50.

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal,
Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Processing at
Scale. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD
’15). ACM, 239 – 250.

Teng Li, Jian Tang, and Jielong Xu. 2015. A Predictive Scheduling Framework for Fast and Distributed
Stream Data Processing. In Proceedings of the 2015 IEEE International Conference on Big Data (Big-
Data ’15). IEEE Computer Society, 333–338.

Bjrn Lohrmann, Peter Janacik, and Odej Kao. 2015. Elastic Stream Processing with Latency Guarantees. In
Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS
’15). IEEE, 399 – 410.

Bjrn Lohrmann, Daniel Warneke, and Odej Kao. 2014. Nephele Streaming: Stream Processing under QoS
Constraints at Scale. Cluster computing 17, 1 (2014), 61–78.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications 1:33

Kasper Grud Skat Madsen, Yongluan Zhou, and Li Su. 2016. Enorm: Efficient Window-based Computation
in Large-scale Distributed Stream Processing Systems. In Proceedings of the 10th ACM International
Conference on Distributed and Event-based Systems (DEBS ’16). ACM, 37–48.

Tiziano De Matteis and Gabriele Mencagli. 2017. Proactive Elasticity and Energy Awareness in Data Stream
Processing. Journal of Systems and Software 127 (2017), 302 – 319.

Lory Al Moakar, Alexandros Labrinidis, and Panos K. Chrysanthis. 2012. Adaptive Class-Based Scheduling
of Continuous Queries. In Proceeding of the 28th IEEE International Conference on Data Engineering
Workshop (ICDE ’12). IEEE, 289–294.

Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Campbell. 2015. R-Storm:
Resource-Aware Scheduling in Storm. In Proceedings of the 16th Annual Middleware Conference (Mid-
dleware ’15). ACM, 149–161.

Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen, and Oliver Spatscheck.
2011. Profiling Resource Usage for Mobile Applications: A Cross-layer Approach. In Proceedings of the
9th International Conference on Mobile Systems, Applications, and Services (MobiSys ’11). ACM, 321–
334.

Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu,
and Zheng Zhang. 2013. TimeStream: Reliable Stream Computation in the Cloud. In Proceedings of the
European Conference on Computer Systems (EuroSys ’13). ACM, 1–14.

Sajith Ravindra, Miyuru Dayarathna, and Sanath Jayasena. 2017. Latency Aware Elastic Switching-based
Stream Processing Over Compressed Data Streams. In Proceedings of the 8th ACM/SPEC on Interna-
tional Conference on Performance Engineering (ICPE ’17). ACM, 91–102.

Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-Lung Wu. 2009. Elastic Scaling of
Data Parallel Operators in Stream Processing. In Proceedings of the IEEE International Symposium on
Parallel Distributed Processing (IPDPS ’09). IEEE, 1 – 12.

Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu. 2012. Auto-parallelizing Stateful Dis-
tributed Streaming Applications. In Proceedings of the 21st International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT ’12). ACM, 53–64.

Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. 2015. Automating Performance Bottleneck De-
tection Using Search-based Application Profiling. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis (ISSTA ’15). ACM, 270–281.

Muhammad Aater Suleman, Moinuddin K. Qureshi, Khubaib, and Yale N. Patt. 2010. Feedback-directed
Pipeline Parallelism. In Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’10). ACM, 147–156.

Dawei Sun, Ge Fu, Xinran Liu, and Hong Zhang. 2014. Optimizing Data Stream Graph for Big Data Stream
Computing in Cloud Datacenter Environments. International Journal of Advancements in Computing
Technology 6, 5 (2014), 53–65.

Dawei Sun, Guangyan Zhang, Songlin Yang, Weimin Zheng, Samee U. Khan, and Keqin Li. 2015. Re-Stream:
Real-time and Energy-efficient Resource Scheduling in Big Data Stream Computing Environments.
Information Sciences 319 (Oct. 2015), 92–112.

Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. 2002. Resource Overbooking and Application
Profiling in Shared Hosting Platforms. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 239–254.

Rafael Weingartner, Gabriel Beims Brascher, and Carlos Becker Westphall. 2015. Cloud Resource Manage-
ment: a Survey on Forecasting and Profiling Models. Journal of Network and Computer Applications 47
(2015), 99 – 106.

Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Rohit Wagle, Kun-Lung Wu, and
Lisa Fleischer. 2008. SODA: An Optimizing Scheduler for Large-scale Stream-based Distributed Com-
puter Systems. In Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware
(Middleware ’08). Springer-Verlag, 306–325.

Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic Stateful Stream Computation in the Cloud. In
Proceedings of the 2015 IEEE 31st International Conference on Data Engineering. IEEE, 723–734.

Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. 2005. Dynamic Load Distribution in the Borealis Stream
Processor. In Proceedings of the 21st International Conference on Data Engineering (ICDE ’05). IEEE
Computer Society, 791–802.

Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. 2014. T-Storm: Traffic-Aware Online Scheduling in
Storm. In Proceedings of the 2014 IEEE 34th International Conference on Distributed Computing Sys-
tems (ICDCS ’14). IEEE Computer Society, 535–544.

Le Xu, Boyang Peng, and Indranil Gupta. 2016. Stela: Enabling Stream Processing Systems to Scale-in and
Scale-out On-demand. In Proceedings of the 2016 IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 22–31.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 1, Publication date: January 2017.

	Introduction
	Motivation
	Stepwise Profiling Overview
	Stepwise Profiling Design
	Application Feature Profiling
	Platform Capability Profiling
	Operator Capacity Profiling
	Recalibration Mechanism

	System Implementation
	Performance Evaluation
	Experiment Setup
	Test Applications
	Evaluation Methodology
	Comparable Methods

	Applicability Evaluation
	Scalability Evaluation
	System Parameters Evaluation

	Related Work
	Performance Oriented Deployment
	Application Profiling
	Other Performance Optimization Techniques

	Conclusions and Future Work

