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Abstract—Scheduling streaming applications in Data Stream
Management Systems (DSMS) has been investigated for years.
However, there lacks an intelligent system that is capable
of monitoring application execution, modelling its resource
usages, and then adjusting the scheduling plan under different
sizes of inputs without requiring users’ intervention. In this
paper, we model the scheduling problem as a bin-packing
variant and propose a heuristic-based algorithm to solve it
with minimised inter-node communication. We also implement
the D-Storm prototype to validate the efficacy and efficiency
of our scheduling algorithm, by extending the Apache Storm
framework into a self-adaptive MAPE (Monitoring, Analysis,
Planning, Execution) architecture. The evaluation carried out
on both synthetic and realistic applications proves that D-
Storm outperforms the existing resource-aware scheduler and
the default Storm scheduler by at least 16.25% in terms of the
inter-node traffic reduction and yields a significant amount of
resource savings through consolidation.

1. Introduction

Big data processing has now gained popularity for its
ability to deal with data of big volume and high velocity.
There are situations in which data received in real time
needs to be processed upon arrival to keep its volatile value.
For example, an investor must analyse the statistics of share
market in time to avoid economic losses and a social media
website has to process ongoing user posts to suggest topics
on trend. To cater for these real-time requirements, stream
processing emerges as a new in-memory paradigm that pro-
cesses continuous, unbounded inputs on a record-by-record
basis. Such once-at-a-time processing model performs inde-
pendent computations on a smallish window of recent data,
delivering results within merely sub-second latency.

Despite the diversity of various use cases, the majority
of streaming applications in existence are built on top of a
Data Stream Management System (DSMS) to reap the ben-
efits of better programmability and manageability. Apache
Storm1, for example, is a state-of-the-art distributed DSMS
implementation with supports for imperative programming
language and unified data stream management model. It also
offers user-transparent fault-tolerance, horizontal scalabil-
ity, and state management by providing the abstraction of
streaming primitives and simplifying the use of distributed
resources at the middleware level.

1. http://storm.apache.org/

Scheduling of streaming applications is one of the many
things that should be transparently handled by the DSMSs.
To maximise application performance and reduce the re-
source footprints, it is of crucial importance for the DSMS
to schedule each application as compact as possible so
that fewer resources are consumed to achieve the same
performance target. This motivates the needs of resource-
aware scheduling, which matches the resource demands
of streaming tasks to the capacity of distributed nodes.
However, the default schedulers adopted in the state-of-the-
art DSMSs, including Storm, are resource agnostic. Without
capturing the differences of task resource consumptions,
they follow a simple round-robin process to scatter the ap-
plication tasks over the cluster, thus inevitably leading to ex-
ecution inefficiency due to over/under utilisation. Recently,
a few dynamic schedulers have been proposed to reduce the
network traffics and improve the maximum throughput for
a single application at runtime [1]–[5]. However, they all
share the load-balancing principle that aims to distribute the
workload as even as possible. Such practice makes it impos-
sible to consolidate resources when the input is small and
the scheduling result may suffer from severe performance
degradation when multiple applications are submitted to the
same cluster and end up competing for the computation and
network resources on each single node.

To fill in this gap, Peng et al. [6] proposed a resource-
aware scheduler that schedules streaming applications based
on the resource profiles submitted by users at compile time.
But the problem is only partially tackled for the follow-
ing reasons. (1) The resource consumption of each task is
statically configured within the application, which suggests
that it is agnostic to the actual application workload and
will remain unchanged during the whole lifecycle of the
streaming application. However, the resource consumption
of a streaming task is known to be correlated to the input
workload and the latter may be subject to unforeseeable fluc-
tuations due to the real-time nature. (2) The scheduler only
schedules once during the initial application deployment,
making it impossible to adapt the scheduling plan to runtime
changes. The existing scheduler is a static component that
regards the scheduling problem as a one-time item packing
process, so it only works on unassigned tasks produced by
new application submission and worker failures.

In this paper, we propose a dynamic resource-efficient
scheduling algorithm to tackle the problem as a bin-packing
variant. We also implement a prototype named D-Storm to
validate the efficacy and efficiency of the proposed algo-

http://storm.apache.org/


rithm. D-Storm does not require users to statically specify
the resource needs of streaming applications, instead, it
evaluates the resource consumption of each task at runtime
by monitoring the volume of incoming workload. Secondly,
D-Storm is a dynamic scheduler that repeats its bin-packing
policy with a customizable scheduling interval, which means
that it is able to free under-utilized nodes whenever possible.

The main contributions of this work are summarised as
follows:

• We propose a dynamic resource-efficient scheduler
that, to the best of our knowledge, is the first of its
kind to dynamically schedule streaming applications
based on bin-packing formulations.

• We design a greedy algorithm to solve the bin-
packing problem, which generalises the classical
First Fit Decreasing (FFD) heuristic. The algorithm
is capable of reducing the amount of inter-node
communication as well as minimising the resource
footprints used by streaming applications.

• We implement the prototype on Storm and conduct
extensive experiments to demonstrate the superiority
of our approach compared to the existing static
resource-aware scheduler.

It is worth noting that though our D-Storm prototype
has been implemented as an extended scheduler on Storm,
the fact that it is loosely coupled with the existing Storm
modules and the design to be externally configurable makes
it viable to be generalised to other operator-based stream
processing systems.

The remainder of the paper is organised as follows. We
provide an overview of the framework in Section 2, and then
formulate the scheduling problem and present the heuristic-
based algorithm in Section 3. The performance evaluation
is presented in Section 4, followed by the related work and
conclusions in Sections 5 and 6, respectively.

2. D-Storm Framework

D-Storm realises dynamic and resource-efficient
scheduling by incorporating the following new features into
the standard Storm framework:

• It tracks streaming tasks at runtime to obtain their
resource usages and the volumes of inbound / out-
bound communications. This information is critical
for the scheduler to avoid resource contention and
minimize inter-node communication.

• It makes real-time scheduling decisions to pack tasks
as compact as possible, which translates to reducing
the resource footprints while satisfying the perfor-
mance requirements of streaming applications.

• It automatically re-schedules the cluster whenever
the resource contention is spotted or it finds a new
scheduling plan that yields more resource savings.

To implement these features, D-Storm extends the stan-
dard Storm release with several loosely coupled modules
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Figure 1. The extended D-Storm architecture on top of the standard Storm
release, where the newly introduced modules are highlighted in grey

as shown in Fig. 1, thus constituting a MAPE (Monitor-
ing, Analysis, Planning, Execution) framework for dynamic
application scheduling. Essentially, there is a feedback con-
trol process in each MAPE loop that allows for runtime-
awareness and system self-adaptivity.

The feedback control process starts with the Task Wrap-
per, a monitoring module that constantly measures and
reports the task resource usages and communications. Each
task wrapper only encapsulates a single task following the
decorator pattern, which inserts the desired functionalities
to the original task logic. Specifically, it monitors the CPU
usages in the execute method by making use of the Thread-
MXBean class, and it logs the communication traffics among
tasks by registering a custom metric consumer. It is worth
noting that the collected metrics on communication and
resource usages are subject to non-negligible instantaneous
fluctuations due to the dynamic nature of stream processing.
Therefore, the task wrapper averages the metric readings
over an observation window and periodically reports the
result to Zookeeper for persistence.

The analysing phase in the MAPE loop is carried out
by the System Analyser module, which conducts boundary
checks on the collected metrics and determines whether they
represent a normal system state. For example, the previously
decided schedule plan may result in over-utilization due to
the lack of resources, as the resource consumption grows
when presented with higher workloads. Analogously, the
current scheduling may become an over-kill for process-
ing the off-peak workloads, and tasks should be consoli-
dated into a fewer worker nodes to save costs. The System
Analyser module is responsible for identifying these over-
utilization and under-utilization states through threshold
checks and invoking the planning phase when necessary.

The Scheduling Solver comes into play when it re-
ceives the signal from the system analyser reporting the
abnormal system states. It retrieves the runtime resource
and performance metrics and then conducts the scheduling



calculation using the algorithm elaborated in Section 3. We
have designed the scheduler solver in a way that it is not to
be invoked more frequently than the predefined scheduling
interval, the value of which should be fine-tuned to strike a
balance between the system stability and agility.

Once a new scheduling plan is made, the executor in the
MAPE loop — D-Storm Scheduler takes the responsibility
to put the new plan into effect. From a practical perspective,
it is a jar file placed on the Nimbus node which implements
the IScheduler interface to leverage the existing scheduling
APIs provided by Storm.

In order to keep our D-Storm scheduling framework
transparent to the user-level streaming applications, we also
supply a Task Adapter module in the Storm core that auto-
matically encapsulates tasks in tasks wrappers. In addition,
developers can specify the scheduling parameters through
this module, which proves to be an elegant way to cater for
the diverse needs of different streaming scenarios.

3. Dynamic Resource-Aware Scheduling

The dynamic resource-aware scheduling in D-Storm ex-
hibits the following characteristics: (1) each task has a set
of resource requirements that are constantly changing with
regard to the amount of inputs being processed; (2) each
machine (worker node) has a set of available resources
for accommodating tasks that are assigned to it; (3) the
scheduling algorithm is executed on-demand to take into
account any runtime changes in task resource requirements.

3.1. Problem Formulation

For each round of scheduling, the essence of the problem
is to find a mapping of tasks to worker nodes such that the
communicating tasks are packed as compact as possible.
Meanwhile, the resource constraints need to be respected
that in each node the resource availability is not exceeded
by the resource requirements. Since the compact assignment
of tasks also leads to reducing the number of used machines,
we model the scheduling problem as a variant of the bin-
packing problem and formulate it using the symbols illus-
trated in Table 1.

In this work, the resource consumptions and availability
are examined in two dimensions — CPU and memory.
Though memory resources can be intuitively measured in
terms of megabytes, the quantification of CPU resources is
usually vague and imprecise due to the diversity of CPU
architectures and implementations. Therefore, following the
convention in literature [6], we specify the amount of CPU
resources by a point-based system, with 100 points being
the full capacity of a single core. Note that a multi-core
CPU can get a capacity of num of cores * 100 points, and
a task that accounts for p% CPU usages reported by the
monitoring system has a resource demand of p points.

As reported in [7], task τi’s CPU and memory resource
requirements can be linearly modelled with regard to the size
of the current input loads, which are illustrated in Eq. (1).

TABLE 1. SYMBOLS USED FOR DYNAMIC RESOURCE-AWARE
SCHEDULING

Symbol Description

n Number of tasks to be assigned
τi Task i, i = 1, ..., n

m Number of available machines (worker nodes) in the cluster
νi Worker node i, i = 1, ...,m

W
νi
c CPU capacity of νi, measured in a point-based system

W
νi
m Memory capacity of νi, measured in Mega Bytes (MB)

ω
τi
c Total CPU requirement of τi in points
ω
τi
m Total memory requirement of τi in Mega Bytes (MB)
ρ
τi
c Unit CPU requirement for τi to process a single tuple
ρ
τi
m Unit memory requirement for τi to process a single tuple

ξτi,τj The size of data stream transmitting from τi to τj
Θτi The set of upstream tasks for τi
Φτi The set of downstream tasks for τi
κ The volume of inter-node traffic within the cluster

mused Number of used machines in the cluster

ωτic = (
∑

τj∈Θτi

ξτj ,τi) ∗ ρτic

ωτim = (
∑

τj∈Θτi

ξτj ,τi) ∗ ρτim
(1)

Having modelled the resource consumption at runtime,
each task is considered as an item of multi-dimensional
volumes that needs to be allocated to a particular ma-
chine during the scheduling process. Given a set of m
machines (bins) with CPU capacity W νi

c and memory ca-
pacity W νi

m (i ∈ {1, ..,m}), and a list of n tasks (items)
τ1, τ2, ..., τn with their CPU demands and memory demands
denoted as ωτic , ωτim (i ∈ {1, 2, .., n}), the problem is
formulated as follows:

minimize κ(ξξξ,xxx) =
∑

i,j∈{1,..,n}

ξτi,τj (1−
∑

k∈{1,..,m}

xi,k ∗ xj,k)

subject to
m∑
k=1

xi,k = 1, i = 1, ..., n,

n∑
i=1

ωτic xi,k ≤W νk
c k = 1, ...,m,

n∑
i=1

ωτimxi,k ≤W νk
m k = 1, ...,m,

(2)

where xxx is the control variable that stores the task placement
in a binary form:

xi,k =

{
1 if task τi is assigned to machine νk,
0 otherwise;

Eq. (3) shows that xxx can also be used to reason the
number of used machines as a result of scheduling:

mused =
∑

j∈{1,...,m}

∨
i∈{1,...,n}

xi,j (3)



3.2. Heuristic-based Scheduling Algorithm

The classical bin-packing problem has proved to be NP-
Hard [8], and so does the scheduling of streaming applica-
tions [6]. There could be a massive amount of tasks involved
in each single assignment, so it is computationally infeasible
to find the optimal solution in polynomial time. Besides,
streaming applications are known for their strict latency con-
straints on processing time, so the efficiency of scheduling
is even more important than the result optimality to prevent
the violation of the real-time requirement. Therefore, we
opt for greedy heuristics rather than exact algorithms such
as bin completion [9] and branch-and-price [10], which have
exponential time complexity.

The proposed algorithm is a generalisation of the classi-
cal First Fit Decreasing (FFD) heuristic. FFD is essentially
a greedy algorithm that sorts the items in a decreasing order
(normally by their size) and then sequentially allocates them
into the first bin with sufficient remaining space. However,
in order to apply FFD in our multidimensional bin-packing
problem, the standard bin packing procedure has to be
generalised in three aspects as shown in Algorithm 1.

Firstly, all the available machines are arranged in de-
scending order by their resource availability so that the
more powerful ones get utilised first for task placement.
This step is to ensure that the FFD heuristic has a better
chance to convey more task communications within the
same machine, thus reducing the cumbersome serialisation
and de-serialisation procedures. Since the considered ma-
chine characteristics — CPU and memory are measured in
different metrics, we define a resource availability function
that holistically combines these two dimensions and returns
a scalar for each node, as shown in Eq. (4).

℘(νi) = min { nW νi
c∑

j∈{1,...,n}
ω
τj
c
,

nW νi
m∑

j∈{1,...,n}
ω
τj
m
} (4)

Secondly, the evaluation of the task priority function
%(τi) is dynamic and runtime-aware, considering not only
the task communication pattern but also the node to which
it attempts to assign. We denote the attempted machine as
νm, then %(τi, νm) can be formulated as a weighted sum
of two terms, which are namely: (1) the amount of newly
introduced intra-node communication if τi is assigned to νm,
and (2) the amount of potential intra-node communication
that τi can bring to νm in the subsequent task assignments.

The mathematical formulation of %(τi) is given as fol-
lows:

%1(τi, νm) =
∑

j∈{1,...,n}

xj,νm(ξτi,τj + ξτj ,τi)

%2(τi, νm) =
∑
j∈Φτi

(1−
∑

k∈{1,...,m}

xj,k)ξτi,τj

+
∑
j∈Θτi

(1−
∑

k∈{1,...,m}

xj,k)ξτj ,τi

%(τi, νm) = α%1(τi, νm) + β%2(τi, νm)

(5)

Algorithm 1: The multidimensional FFD heuristic
scheduling algorithm

Input: A task set ~τ = {τ1, τ2, . . . , τn} to be assigned
Output: A machine set ~ν = {ν1, ν2, . . . , νmused} with

each machine hosting a disjoint subset of ~τ ,
where mused is the number of used machines

1 Sort available nodes in descending order by their
resource availability as defined in Eq. (4)

2 mused ← 0
3 while there are tasks remaining in ~τ to be placed do
4 Start a new machine νm from the sorted list;
5 if there are no avaiable nodes then
6 return Failure
7 end
8 Increase mused by 1
9 while there are tasks that fit into machine νm do

10 foreach τ ∈ ~τ do
11 Calculate %(τi, νm) according to Eq. (5)
12 end
13 Sort all viable tasks based on their priority
14 Place the task with the highest %(τi, νm) into

machine νm
15 Remove the task from ~τ
16 Update the remaining capacity of machine νm
17 end
18 end
19 return ~ν

In Eq. (5), %1(τi, νm) represents the sum of introduced
intra-node communication if τi is assigned to νm, and
%2(τi, νm) denotes the sum of communications that τi has
with a peer that has not been assigned so far. α and β are the
weight parameters that determine the relative importances
of these two independent terms. In short, the higher value
%(τi, νm) is, the higher priority τi will be packed into νm.

Designing %(τi, νm) in this way will make sure that
the packing priority of the remaining tasks is dynamically
updated after each assignment and those tasks sharing a
large volume of communication are prioritised to be packed
into the same node. This is in contrast to the classical FFD
heuristics that first sort the items in terms of their priority
and then proceed to the packing process strictly following
the pre-defined order.

Finally, our algorithm implements the FFD heuristic
from a bin-centric view, which opens only one machine at a
time to accept task assignment. The algorithm keeps filling
it with new tasks until the remaining capacity is running out,
thus satisfying the resource constraints stated in Eq. (2).

4. Performance Evaluation

We evaluate the D-Storm prototype using both syn-
thetic and realistic streaming applications, and compare the
heuristic-based scheduling algorithm against the one pro-
posed in the static resource-aware scheduler and the round-
robin algorithm in the default Storm scheduler.
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Figure 2. The profiling environment used for controlling the input load.
The solid lines denote the generated data stream flow, and the dashed lines
represent the flow of performance metrics

Specifically, the performance evaluation focuses on the
following independent research questions:

• Whether D-Storm is applicable to different types
of streaming applications and capable of reducing
the total amount of inter-node communication? (Sec-
tion 4.2)

• How is D-Storm performing when the input load
decreases and the cluster is under-utilized? (Sec-
tion 4.3)

• How long does it take for D-Storm to schedule
relatively large streaming applications? (Section 4.4)

4.1. Experiment Setup

Our experiment platform is set up on the Nectar Cloud2,
comprising 1 Nimbus node, 1 Zookeeper node, 1 Kestrel3
node and 16 worker nodes. All these machines are spawned
from the “m2.medium” flavour, with each equipped with 2
VCPUs, 6 GB memory and 30 GB disk space. For the soft-
ware stack, all the participating nodes are running Ubuntu
16.04 and Oracle JDK 8, update 121. We built our D-Storm
extension on Apache Storm v1.0.2, and the comparable
approaches — the static resource-aware scheduler and the
default scheduler are directly extracted from this release.

In order to evaluate the performance of D-Storm under
different sizes of workload, we have set up a profiling
environment that allows us to adjust the size of the in-
put stream with fine-grained control. Fig. 2 illustrates the
components of the profiling environment from a working
perspective. There is a Message Generator that reads the
profiling messages from a local file of tweets, and then
generates a profiling stream of a given volume to the Kestrel
node leveraging the message push API. The Message Queue
running on the Kestrel node implements a Kestrel queue
to cache any messages that have been received but not
pulled away by the streaming application. The streaming
application is scheduled on the D-Storm cluster to process
the profiling stream, which consists of a series of tweets
in JSON format that were collected from 4/03/2014 to
14/04/2014. The Metric Reporter is responsible for probing
the application performance — such as throughput and
latency — using the Storm RESTful API, and reporting

2. https://nectar.org.au/research-cloud/
3. https://github.com/twitter-archive/kestrel

the volume of inter-node communication in the forms of
the number of tuples transferred and the volume of data
streams conveyed in the network. Finally, the Performance
Monitor is introduced to examine whether the application is
sustainably processing the profiling input and if the appli-
cation performance has satisfied the pre-defined Quality of
Service (QoS), such as processing 5000 tuples per second
with the processing latency no larger than 500 ms.

4.1.1. Test Applications. The evaluation includes two test
applications, one synthetically made and one drawn from
real-world streaming use case. The synthetic application is
designed to produce different patterns of resource consump-
tion, such as CPU bound and I/O bound computations. There
are three synthetic bolts concatenated in serial, following the
Kestrel Spout that pulls the input stream from the message
queue. The logic of the synthetic bolts is configurable, with
all the configuration items listed in Table 2.

TABLE 2. THE CONFIGURATIONS OF THE SYNTHETIC TEST
APPLICATION

Symbol Configuration Description

Cs The CPU load of each synthetic bolt.
Ss The selectivity4of each synthetic bolt.

Ts
The number of tasks that each synthetic bolt has,
also referred to as operator parallelism.

From the implementation point of view, the configura-
tion items listed in Table 2 have a significant impact on
the execution logic of the synthetic bolt. Specifically, Cs
determines how many times this operator will invoke the
method of random number generation Math.random() upon
any tuple receipt, with Cs = 1 representing 100 times
invocation. So the higher Cs is set, the larger CPU load the
bolt will have. Besides, Ts indicates the operator parallelism
during the topology building process, while Ss determines
the selectivity of this operator and also the internal size of
communication stream between tasks.

The second test application is taken from a realistic
stream processing use case — analysing the sentiment of
tweet contents by word parsing. There are 11 operators
constituting a tree-like topology, with the sentimental score
calculated using AFFINN, a list of words associated with
pre-defined sentiment values. We refer to [11] for more
details of the analysis process.

4.1.2. Parameter Selection. To avoid overshooting and
overcome the fluctuation in metric observations, we set the
metric collection window to 1 minute and the scheduling
interval to 10 minutes. In addition, we configured α to 10
and β to 1, in order to put a stronger emphasis on the
immediate gain of each task assignment rather than the
potential benefits. We also set the latency constraint of each
application to 500 ms, which represents a typical real-time
requirement under streaming scenarios.

4. Selectivity is the number of tuples emitted per tuple consumed; e.g.,
selectivity = 2 means the operator emits 2 tuples for every 1 consumed.

https://nectar.org.au/research-cloud/
https://github.com/twitter-archive/kestrel
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Figure 3. The relative change of the inter-node communication, with the baseline produced by the Default Storm scheduler. We repeated each experiment
for 5 times and the result bar also shows the standard deviation of the results. In the legend, static RAS stands for static resource-aware scheduler

4.2. Evaluation of Applicability
In this evaluation, we ran both streaming applications

with all three schedulers under the same circumstances that
a given size of profiling stream needs to be processed within
the latency constraint. For the ease of interpretation, we
report the relative changes to the communication volume
(MB) while comparing the D-Storm scheduler and the static
resource-aware scheduler (static RAS) against the default
scheduler.

In order to evaluate the performance of scheduling under
different application behaviours, the synthetic topology is
configured to exhibit different types of resource consump-
tion patterns, including CPU intensive (varying Cs), I/O
intensive (varying Ss) and parallelism intensive (varying
Ts). Also, the number of tasks for the twitter sentiment
analysis is varied to examine the scheduler applicability to
more complex use cases. Table 3 lists the evaluated and
default values for the application configurations, where the
default values are highlighted in bold. Note that when one
configuration is altered, the others are set to their default
value for fair comparison.

TABLE 3. EVALUATED CONFIGURATIONS AND THEIR VALUES

Configuration Value

Cs (synthetic topology) 10, 20, 30, 40
Ss (synthetic topology) 1, 2, 3, 4
Ts (synthetic topology) 4, 8, 12, 16
Number of tasks (realistic application) 11, 21, 31, 415

For all the applicability experiments, we set the size of
the profiling stream to 2000 tuples / second and only collect
communication results after the application is stabilised.
Since the static resource-aware scheduler requires users to
specify the resource consumptions at compile time, we
conducted a pilot run for each application and registered
a LoggingMetricsConsumer6 from the storm-metrics pack-
age to probe the amount of memory/CPU resources being
consumed.

5. The spout has a single task and each bolt has a parallelism of 1, 2,
3, 4, respectively.

6. https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/
metric/LoggingMetricsConsumer.html

In Fig. 3, we present the relative changes of inter-node
communication when using D-Storm scheduler and the static
resource-aware scheduler, compared to that of the default
scheduler as baseline. We find that our D-Storm prototype
always performs at least as well as the static counterpart, and
often noticeably improves the communication reduction.

Specifically, a study of Fig. 3a reveals that D-Storm
performed similarly to the static RAS when applied to
CPU-bound use cases, with an average of communication
reduction being 26.63%. Since the communication cost is
dominated by the processing cost, scheduling heavy tasks
onto a fewer number of nodes reduces to a typical bin-
packing problem that is tackled well by both of the two
approaches. However, it is worth noting that the communi-
cation reduction brought by the static scheduler is based on
the correct configurations provided by the pilot run. If this
information were not specified correctly, the static resource-
aware would lead to undesirable scheduling results that
could cause over-utilization and impair the system stability.

Fig. 3b, on the other hand, showcases that D-Storm
significantly outperformed the static one by 22% in the
most I/O intensive test case. This is credited to the fact
that D-Storm specifically takes runtime communications
into account during the decision-making process. By con-
trast, the existing scheduler can only optimise inter-node
communication based on the number of task connections,
which contains only coarse-grained information and does
not reflect the actual communication pattern.

The parallelism intensive test case reveals another flaw
of the static scheduler — tasks of the same operator are
considered homogeneous in all aspects. As a matter of fact,
tasks are not identical in terms of the received processing
load, and they usually require a different amount of re-
sources to accomplish the streaming jobs. Besides, as the
number of tasks grows, the load distribution on each task as
well as the incurred resource consumptions will be further
amortised. However, setting the resource demand at the
operator level forces all the spawned tasks to share the same
resource profile and disregard any load changes. As shown
in Figs. 3c and 3d, the performance of the static scheduler
significantly degrades when the number of tasks increases,
while D-Storm performs consistently well in relatively large

https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/metric/LoggingMetricsConsumer.html
https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/metric/LoggingMetricsConsumer.html
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Figure 4. Cost efficiency analysis of D-Storm scheduler as the input load
decreases. Fig. 4b is calculated based on the price of m1.medium instances
in the AWS Sydney region

test cases, with the average communication reduction being
around 27.5% and 16.25%, respectively. It is worth reporting
that the static resource-aware scheduler performed even 5%
worse than the default scheduler, for which we identified the
cause to be the malformed resource profiles causing under-
utilization and unnecessarily tearing apart the communicat-
ing task pairs into different nodes during scheduling.

4.3. Evaluation of Cost Efficiency
Modelling the scheduling problem as a bin-packing vari-

ant offers the possibility to consolidate tasks into a fewer
nodes when experiencing load valleys. In this evaluation,
we apply D-Strom scheduler to the test applications, vary
the size of input stream from 4000 tuples / second to 1000
tuples / second, and then examine the minimal resources
required to process the given workload without violating
the performance QoS.

There are two test applications derived from the syn-
thetic application, mimicking the most intense CPU-bound
and I/O-bound scenarios — the first application sets Cs to
40, and the second one sets Ss to 4. The other configurations
are not altered during these experiments.

As shown in Fig. 4a, the number of machines used
by the D-Storm scheduler steadily reduces when the input
load decreases. This trend is more obvious in the first
scenario, leading to the reduction of 13 worker nodes. This
can be explained by the fact that our testbed is equipped
with scarcer CPU resources as compared to the network
resources, causing the heavy tasks to be rapidly spread out
in the cluster to avoid resource contention. To intuitively
illustrate the benefit of task consolidation, Fig. 4b shows
the monetary cost saved in AUD if the cluster is composed
of m1.medium instances in the AWS Sydney Region7, where
a m1.medium instance is charged at AUD $0.117 per hour.

However, the comparable schedulers such as the static
resource-aware scheduler and the default Storm scheduler
lack the ability to consolidate tasks when necessary. In
these test scenarios, they would occupy the same amount of
resources even if the input load dropped to only one-quarter
of the previous amount.

7. https://aws.amazon.com/ec2/pricing/

TABLE 4. THE TIME CONSUMED IN CREATING SCHEDULES BY
DIFFERENT STRATEGIES (UNIT: MILLISECONDS)

Schedulers
Test Cases Parallelism Intensive Synthetic App

Ts=4 Ts=8 Ts=16 Ts=20

D-Storm 16.4 16.2 16.8 17.2
Static Scheduler 5.2 5.7 5.5 5.9
Default Scheduler 0.72 0.77 0.75 0.79

Twitter Sentiment Analysis

Nt8=11 Nt=21 Nt=31 Nt=41

D-Storm 13.4 13.6 13.8 13.9
Static Scheduler 3.41 3.61 3.53 3.91
Default Scheduler 0.61 0.62 0.65 0.62

4.4. Evaluation of Scheduling Overhead
We also examine the time required for D-Storm to

calculate a viable scheduling plan, as compared to that of
the static RAS scheduler and the default Storm scheduler.
In this case, the parallelism intensive synthetic application
and the twitter sentiment analysis are chosen for conducting
the evaluation.

Studying Table 4, we find that the default Storm sched-
uler is the fastest among the all three comparable schedulers,
which takes less than 1 millisecond to run the round-robin
strategy. In contrast, the algorithm proposed in D-Storm is
the slowest, as it requires re-sorting all the remaining tasks
by their updated priority after each single task assignment.
However, considering the fact that the absolute value of the
time consumption is at the millisecond level, we conclude
our solution is scalable to deal with large problem instances
from the real world.

5. Related Work
Scheduling of streaming applications has attracted close

attention from both big data researchers and practitioners.
This section conducts a multifaceted comparison between
the proposed D-Storm prototype and the most related sched-
ulers in various aspects, as summarised in Table 5.

TABLE 5. RELATED WORK COMPARISON

Aspects Related Works Our

[5] [6] [2] [4] [12] [13] [1] Work

Dynamic Y N Y Y Y N Y Y
Resource-aware N Y N N Y Y N Y
Communication Y N Y Y N Y Y Y-aware
Self-adaptive Y N Y Y N N Y Y
User-transparent N N Y Y N N N Y
Cost-efficient N Y N N Y N N Y

Aniello et al. pioneered dynamic scheduling algorithms
in the stream processing context [5]. They developed a
heuristic-based algorithm that places communicating tasks
in pairs to the same node, thus reducing the amount of

8. Nt: The number of tasks for twitter sentiment analysis.

https://aws.amazon.com/ec2/pricing/


inter-node communication. The proposed solution is self-
adaptive, which includes a task monitor to collect metrics
at runtime and continuously adapts the scheduling plan to
improve overall performance. However, the task monitor is
not transparently set up at the middleware level and the
algorithm is unaware of the resource demands of each task
being scheduled. It also lacks the ability to consolidate tasks
into fewer nodes for improving cost efficiency.

By modelling the task scheduling as a graph partitioning
problem, Fisher et al. presented that the METIS software
is also applicable to the scheduling of stream processing
applications, which achieves better results on load balancing
and reduction of inter-node communication as compared to
Aniello’s work [5]. However, their work is also not aware
of resource demand and availability, let alone reducing the
resource footprints with regard to the input load.

Xu et al. proposed another dynamic scheduler that is
not only communication-aware but also user-transparent [4].
The proposed algorithm reduces inter-node traffic through
iterative tuning and mitigates the resource contention by
rebalancing the workload distribution. However, it does not
model the resource consumption and availability for each
task and node, thus lacking the ability to prevent resource
contention from happening in the first place.

Sun et al. investigated energy-efficient scheduling by
modelling the mathematical relationship between energy
consumption, response time, and resource utilization [12].
But the algorithm proposed requires modifying the appli-
cation topology to merge operators on non-critical paths.
A similar technique is also seen in Li’s work [1], which
adjusts the number of tasks for each operator to mitigate
performance bottleneck at runtime. Nevertheless, bundling
scheduling with topology adjustment scarifies the user trans-
parency and impairs the approach applicability.

The static resource-aware scheduler proposed by [6] has
been introduced in Section 1. The main limitation of their
work, as well as [13], [14], is that the runtime changes are
not taken into consideration during the scheduling process.

6. Conclusions and Future Work

In this paper, we proposed a resource-efficient algorithm
for streaming application scheduling and implemented a
prototype scheduler named D-Storm to validate its effective-
ness. D-Storm tracks each streaming task at runtime to col-
lect its resource usages and communication pattern, which
it then uses in the scheduling process to pack communicat-
ing tasks as compact as possible. The compact scheduling
strategy leads to the reduction of resource usages as well as
the amount of inter-node communication that would incur
significant serialisation overhead. Our new algorithm over-
comes the limitation of the static resource-aware scheduler,
offering the ability to adjust the scheduling plan to the
runtime changes while remaining sheer transparent to the
upper-level application logic.

As for future work, we plan to investigate the use of
meta-heuristics to find a better solution for the scheduling
problem. Genetic algorithms, simulated annealing and tabu

search are among the list of candidates that require further
investigation. In addition, we would like to take the network
characteristics into account during the scheduling process,
in order to put a large volume of task communications
on links with higher bandwidth. This research question is
well-motivated by the fog computing infrastructure with
heterogeneous network resources and the resulting scheduler
can find its application in a wide range of Internet of Things
(IoT) scenarios.
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