
A Message Logging Protocol

Based on User Level Failure Mitigation

Xunyun Liu, Xinhai Xu, Xiaoguang Ren, Yuhua Tang, and Ziqing Dai

State Key Laboratory of High Performance Computing
National University of Defense Technology, Changsha, China

xuxinhai@nudt.edu.cn

Abstract. Fault-tolerance and its associated overheads are of great con-
cern for current high performance computing systems and future exas-
cale systems. In such systems, message logging is an important trans-
parent rollback recovery technique considering its beneficial feature of
avoiding global restoration process. Most previous work designed and
implemented message logging at the library level or even lower software
hierarchy. In this paper, we propose a new message logging protocol,
which elevates payload copy, failure handling and recovery procedure to
the user level to present a better handling of sender-based logging for
collective operations and guarantee a certain level of portability. The
proposed approach does not record collective communications as a set of
point-to-point messages in MPI library; instead, we preserve application
data related to the communications to ensure that there exists a process
which can serve the original result in case of failure. We implement our
protocol in Open MPI and evaluate it by NPB benchmarks on a subsys-
tem of Tianhe-1A. Experimental results outline a improvement on failure
free performance and recovery time reduction.

Keywords: Fault tolerance, Message logging, Checkpointing, User Level,
Rollback-recovery.

1 Introduction

In a constant effort to deliver steady performance improvements, the size of High
Performance Computing (HPC) systems, as observed by the Top 500 ranking,
has grown tremendously over the last decade [1]. Unfortunately, the rise in size
has been accompanied by an overall decrease in the mean time between failures
(MTBF) [2]. In order to make large-scale parallel applications simultaneously
survive crashes and mitigate the reliability-wall effects [3] in such systems, we
need efficient and reliable fault tolerance mechanisms.

The Message Passing Interface (MPI) has become a de facto standard used to
build high-performance applications [4], and fault tolerance for message passing
applications is usually achieved by Checkpoint/Restart approach because of its
simplicity of implementation and recovery [5]. However its recovery procedure is
relatively time-consuming since the failure of one process makes all application

J. Ko�lodziej et al. (Eds.): ICA3PP 2013, Part I, LNCS 8285, pp. 312–323, 2013.
c© Springer International Publishing Switzerland 2013

A Message Logging Protocol Based on User Level Failure Mitigation 313

processes rollback to the last coordinated checkpoint. Message logging protocols
present a promising alternative to Checkpoint/Restart, as they do not require
coordinated checkpointing and globally rollback. Instead, only the crashed pro-
cessor is brought back to the previous checkpoint, while the other processors
may keep making progress or wait for the recovering processor in a low-power
state [2].

To be more precise, message logging is a family of algorithms that attempt to
provide a consistent recovery set from checkpoints taken at independent dates [6].
In message logging protocols, message exchanges between application processes
are logged during failure free execution to be able to replay them in the same
order after a failure, this is the so-called payload copy mechanism [7]. Also,
the event logging mechanism is used to correct the inconsistencies induced by
orphan messages and nondeterministic events, by adding the outcome of non-
deterministic events to the recovery set, so it can be forced to a deterministic
outcome (identical to the initial execution) during recovery.

Mainly due to the lack of support from the programming model, most of the
previous implementations of message logging are located at the MPI library level,
thus recent advances in message logging mostly focused on reducing the overhead
of payload copy and event logging in the MPI library and had indeed achieved a
reasonable fault tolerance cost [7–9]. But there are still few drawbacks in those
researches: firstly, MPI itself has several different implementations (MPICH,
Open MPI, etc.), thus it would take effort to transplant a message logging pro-
tocol designed for a specific MPI library to another environment. Secondly, fault
tolerance ability for collective communications is provided by recording fine-
grained point-to-point communications in the MPI library, which results in the
inefficiency of the handling of collective operations in payload copy and recovery
procedure.

In this paper, we adapt a message-logging protocol to run at the user level,
rather than the MPI library level by building it on top of the User Level Failure
Mitigation (ULFM) proposal [1]. Imposing a fault tolerance layer above ULFM
certainly guarantees a level of portability, and recording the collective commu-
nication result into the sender’s message logger as a whole alleviates the fault
tolerant overhead for collective communications.

The rest of the paper is organized as follows. Section 2 introduces the basic
idea behind the User Level Message Logging (ULML) by an example. Section
3 describes our fault-tolerance framework and the implementation. Section 4
discusses our evaluation methodology and demonstrates the superiority of our
protocol over the classical method by benchmarking. Then section 5 reviews the
related work, and finally, Section 6 concludes the paper.

2 Motivation and Basic Idea

This section starts by analyzing the drawbacks of classical library level mes-
sage logging when handling collective operations. Afterwards, we introduce the
motivation and basic idea behind the user level message logging (ULML).

314 X. Liu et al.

As with most previous researches on message logging, we assume that the pro-
cess execution is piecewise deterministic, and communications channels between
processes are reliable and FIFO. Therefore, we will concentrate on the faults of
computing processes with the assumption of fail-stop fault model.

2.1 Message Logging at Library Level

A parallel program with checkpointing is illustrated in the table below, its exe-
cution is constituted by 2 processes, denoted by P0, P1, which have been check-
pointed to disk before executing any code.

1 --CKPT_HERE --

2 int a, int b;

3 MPI_Barrier(MPI_COMM_WORLD);

4 if(my_rank == 0)

5 {

6 a=4;

7 MPI_Send (&a,1,MPI_INT ,1,0, MPI_COMM_WORLD);

8 }

9 if(my_rank == 1)

10 {

11 a=5;

12 MPI_Recv (&b,1,MPI_INT ,0,0, MPI_COMM_WORLD);

13 }

14 MPI_Allreduce (&a,&b,1,MPI_INT ,MPI_MAX ,MPI_COMM_WORLD);

The pessimistic message logging cited from [2] is chosen to illustrate the classi-
cal protocol at MPI library level. It is worth noting that even the recent advances
have further refined the logging scheme to record only important events and mes-
sages at library level [8–10], they still confront with the same drawback as the
original approach does when handling collective operations.

In this approach, a process, before sending a message, has to ask the receiver
for a ticket (the Reception Sequence Number) to compose the determinant for
that message. The determinant and the message are stored in the memory of
the sender, and at that point the message can be actually sent to the receiver.
Messages at the receiver are processed according to their assigned ticket number,
and on recovery ticket numbers can be used to recreate the reception order of
all messages. Furthermore, a collective communication should be divided into
two point-to-point communications at library level, for the reason that the MPI
library of a process must receive the ready signal of the opposing process to
finish the implementation. Fig.1 demonstrates the communication procedure at
the library level.

After executing this program, messagem1, m2, m3, m4, m5 and their assigned
tickets will be recorded, which indicates that recording fine-grained point-to-
point messages for one collective operation induces multiple payload overhead.
If a process error occurs at this moment, the substitution needs to replay all the
receptions in order of their tickets, thus the performance of recovery will be also
remarkably slowed down when the scale of application rises.

A Message Logging Protocol Based on User Level Failure Mitigation 315

r3 m3t3r1

P0

P1
r2 t2t1 m1 m2

MPI_Barrier

r4 r5 t5t4 m4 m5

MPI_AllreduceMPI_Send

MPI_Recv

Fig. 1. The communication procedure of the example program with pessimistic mes-
sage logging at library level, ri represent requests, ti represent tickets and mi represent
messages

2.2 Our Approach: Message Logging at User Level

Rabenseifner presented A five-year profiling study of applications running in
production mode on the Cray T3E 900 at the University of Stuttgart, and it
revealed that more than 40% of the time spent in MPI functions was spent in
the two functions MPI Allreduce and MPI Reduce [11]. That implies collective
communications account for a substantial percentage of total communication
cost. Because of performing collectives frequently, scientific computing paral-
lel programs magnify the drawbacks of library level message logging markedly,
impelling us to explore an alternative solution at user level.

a
P0
P1

P1

substitution

Consistent

Fig. 2. The communication procedure of the example program with message logging
at user level, P ′

1 is the substitution of P1, and the system states are denoted by dashed
lines

Our approach elevates the checkpointing/rollback mechanism, payload copy
mechanism and recovery mechanism to user level, allowing us to record com-
munication as a whole statement without splitting it into implementation de-
tails, so that we can re-transmit the result of collectives instead of individual
point-to-point messages. For the same example program, Fig.2 presents all the
communications at user level, and the payload copy mechanism is detailed below:

– MPI Barrier: after finishing MPI Barrier, each process increases a local vari-
able representing the number of barrier operations executed by 1.

– MPI Send/MPI Recv: P0 simply preserves the variable a into the message
logger after sending the message to P1.

– MPI Allreduce: each process increases a local variable representing the
number of all-reduce operations by 1, and then it logs the local variable
b which is the result of the operation, into the message logger separately.

316 X. Liu et al.

After executing this program, P0 stores variables a, b in the volatile memory
as message logs, while P1 only stores variable b into the message logger. Mean-
while, the statistics information of collective communications is updated in each
process. If P1 malfunctions at the end of the program, as shown in Fig.2, a new
incarnation of the failed process denoted by P ′

1 is recovered from the checkpoint.
By exchanging information between process P0 and P ′

1, P0 is informed that vari-
able a needs to be resent and P ′

1 learns that there are a barrier operation and an
all-reduce operation in the coming recovery procedure. So during recovery, P ′

1

skips the barrier operation, replays reception in MPI Recv, and when executing
MPI Allreduce, P ′

1 does not replay the collective communication, instead, it re-
ceives the original operation result variable b from P0 with MPI Recv statement.
Finally, the recovery system reaches a consistent global state after a failure.

2.3 Comparison of Overhead

The user level message logging significantly reduces the overhead of fault-tolerance
for collective communications. takingMPI Allreduce as an example: the all-reduce
operation combines values from all processes and distributes the results to all pro-
cesses, so it is often used when calculating and determining whether the computa-
tional accuracymeets the requirement or not at the end of the iteration in scientific
computing programs. If we assume that (1)data are not compressed during the all-
reduce operation and (2)source data items are independent of one another, table
1 shows the comparison of fault-tolerant overhead when we perform an all-reduce
operation of X items of itsize bytes on P processes[12].

Table 1. Comparison of overhead induced by different message logging protocols

Message logging At library level At user level

Log number 2× (P − 1) P

Maximum size of
2× P−1

P
×X × itsize X × itsize

each message log

Fault free execution �lgP �(α+nβ+ nγ+nδ) �lgP �(α+nβ+nγ)+nδ
time-consumption

Minimum recovery
α+ nβ α+ nβ

time-consumption

Maximum recovery �lgP �(α+ nβ) α+ nβ
time-consumption

In the table above, a simple cost model is used to estimate the cost of the
algorithm in terms of latency and bandwidth use. To be specific, α is the latency
(or startup time) per message, independent of message size, β is the transfer
time per byte, and n is the number of bytes transferred. In the case of reduction
operations, we assume that γ is the computation cost per byte for performing
the reduction operation locally on any process, and δ is the preservation cost
per byte for storing the message into memory.

A Message Logging Protocol Based on User Level Failure Mitigation 317

3 Framework of the Protocol and Its Implementation

Our framework consists of three mechanisms: the sender based payload copy
mechanism saves exchanged messages into volatile memory; the communi-
cator maintenance mechanism is responsible for updating communicator
when a process fails; once the improper communicator is updated, the recovery
mechanism will resend logged messages to the substitution process and ensure
the consistency of the system.

P0

P1

P1'

Restart
segment

m1 m2
ErrorHandler segment

m3m2

Isend()

Recovery
Procedure

m1

Allreduce
result

Waiting for P1
'

Recieve from
errorhandler

P0 send m2 unsuccessfully,
Spawn P1'

Fig. 3. Example execution of the user level message logging framework, the ErrorHan-
dler segment and the Restart segment are highlighted in bold, and words in bubbles
explain the actions of processes

The flow of the framework is illustrated in Fig.3 by an example. At first the
application executes normally, P0 sends a message m1 to P1 via MPI Send and
then recordsm1 as a message log. When executing the all-reduce operation, both
P0 and P1 preserve the operation result into memory. After finishing the barrier
operation, P1 fails unexpectedly. P0 detects the communicator failure when it
is trying to send m2 to P1, so it moves into the Error Handler segment auto-
matically, then it spawns P ′

1 as a substitution process, re-transmits the logged
message to help P ′

1 recover. After that, P0 jumps out of the Error Handler, con-
tinues execution or waits for message m3 from the opposite. On the other side,
P ′

1 takes the place of P1 in the communicator, jumps to the checkpoint address,
reads the live variables and enters the recovery procedure by means of the exe-
cution of the Restart segment. During P ′

1’s recovery, all the external message it
needs will be resent by P0, and it will not replay any collective communication
until the recovery completes successfully.

Next, we discuss in further detail about how these three mechanisms work.

3.1 Sender Based Payload Copy

Sender based payload copy rules can be classified into two categories: point-to-
point payload copy and collective payload copy, which correspond to the two
types of MPI communications.

Point-to-point payload copy for senders, messages sent to the different
destinations are kept in different log queues, and those messages are sorted by the

318 X. Liu et al.

assigned Send Sequence Number (SSN) according to the transmission sequence.
Also, the length and tag of the message need be recorded alongside in order to
rewrite the send statement on demand. In preparation for the transmission, each
message will be packed into a flat format with the SSN appended at the end.

For receivers, they need to resolve the SSN after receiving a message, and
preserve it into the Highest Sequence number Received (HSR) array representing
the latest message received from the sending end. Any message that has a smaller
SSN is supposed to have been handled correctly according to our assumption.

Collective payload copy every process counts various collective communi-
cations to form the statistics of collectives, and records the operation results on
demand. Although every process can be considered as the sender of a collective
communication, only when a process exists will its application data be updated
by this collective operation, the operation results do require preservation by some
particular processes.

3.2 Communicator Maintenance

Since the failure of the communicator will be exposed to the user code in our
method, the communicator maintenance mechanism needs to be responsible for
the detection of the failure and the restoration of the communicator with the
help of the ULFM support.

The communicator could be modified for the purpose of fault tolerance in three
cases: process initialization, communicator fault, and the substitution process
restart. Thus the maintenance can be divided into three parts, and its work
requires the mutual cooperation between processes, as shown in Fig.4.

Communicator maintenance in process initialization for all processes,
process initialization is the procedure following the initialization of MPI environ-
ment. Themaintenance duplicates the communicator fromMPI COMM WORLD
to a globally defined symbol, and attaches our Errorhandler function to the com-
municator as the default error handling procedure.

Communicator maintenance in Errorhandler the Errorhandler function
will be automatically called whenever a process detects the failure on the com-
municator and returns the error code. In this function, surviving processes revoke
the original communicator so that any subsequent operation on the original com-
municator will eventually fail. Afterwards, they create a new communicator from
the revoked one by excluding its failed process. Then the failed processes is dis-
covered by comparing the group of processes in the shrunken communicator with
the group of processes in the original communicator. After that, a substitution
will be spawned and the inter communicator generated will be merged into an
intra-one. Finally the substitution will replace the failure process by reordering
the ranks on the new communicator.

Communicator maintenance in Restart segment the Restart segment is
a procedure where the substitution operates in collaboration with the surviving
processes to merge and reorder the communicator after the MPI environment
is initialized. Afterwards, it also attaches our Errorhandler function to the new
communicator.

A Message Logging Protocol Based on User Level Failure Mitigation 319

Revoke subsequent
communications

Shrink the
communicator

Get the failure rank

Spawn the
substitution process

Merge the
commnicator

Reorder the ranks
on communicator

Initialize MPI
environment

Merge the
communicator

Reorder the ranks
on communicator

Co-
operating

Co-
operating

In Restart segment

In Errorhandler

Surviving Process

Substitution Process

Fig. 4. The flow of the communicator
maintenance once a failure occurs

Exchange the HSR
array

Send the statistics of
collectives

 Resend logged point-
to-point messages

Resend logged
collective

communication
messages

Exchange the
HSR array

Receive the
statistics

Co-
operating

In Restart
 segment

In
Errorhandler

Surviving Process Substitution Process

Complete
point-to-point

communications

Complete
collective

communications

During
recovery

Fig. 5. The flow of the recovery, operations
which are dashed may be performed mul-
tiple times

3.3 Recovery

Recovery mechanism ensures the consistency of the system by means of oper-
ations at user level. There are two key problems that need to be solved: (1)
determine which messages need to be re-issued, and (2) guide the substitution
process to jump over collective communications correctly during recovery. There-
fore the recovery mechanism should exchange the records of reception between
processes, and inform the substitution of the number of collective communica-
tions which have already been executed. The flow of the recovery mechanism is
illustrated in Fig.5.

Recovery mechanism in Errorhandler firstly, each process obtains the
Highest Sequence number Received (HSR) arrays which are kept in the other
processes’ memory, and forms the Highest Sequence number Delivered (HSD)
array to determine whether a point-to-point message has been delivered suc-
cessfully. After that, the logged messages whose SSN is bigger than HSD stored
will be resent in order. For the logged collective messages, one of the surviving
processes sends the statistics of collective communications to the substitution,
Then all the logged collective operation results should be sent successively.

Recovery mechanism in the Restart segment the substitution gets the
information it needs (HSR arrays and statistics of collective communication) by
the execution of the Restart segment. When entering the recovery procedure, all
the point-to-point receptions could be replayed by their original receive state-
ments, and the collective communications will turn into receptions of the logged
messages or even empty operations.

3.4 Implementation of User Level Message Logging

User level message logging (ULML) encapsulates the default MPI communication
functions (including point-to-point and collective), thereby integrating message

320 X. Liu et al.

logging fault tolerance capabilities in Open MPI. Each of the ULML MPI func-
tions is an implementation of a particular fault tolerant algorithm, and its goal
is to extend the communication with message logging features. ULML does not
modify any core Open MPI component or the communication semantics, it calls
the default MPI interface functions to perform the actual communications.

In order to implement the ULML in MPI programs, programmers need to
follow these steps detailed below: 1. Analyze the communication features of the
program, and insert user level checkpoints into the original programs with com-
piler directive #CKPTi. The method of choosing the positions of checkpoints
has already been discussed in [4]. 2. Replace the original error handler function
with our ULML error handler to bring in the communication maintenance and
recovery mechanism. 3. Replace the original MPI communication functions with
ULFM functions, in order to introduce the payload copy mechanism.

4 Experiments

4.1 Evaluation Methodology

Our computer platform is a subsystem of Tianhe-1A, located in Tianjin, China.
Each node of the computer is equipped with two 2.93G Intel Xeon X5670 CPUs
(12 cores per node) and 24 GB RAM. The interconnection is the same as de-
scribed in [4], and the simplex point-to-point bandwidth is 80 Gb/s. All the
experiments are executed in Redhat 5.5, and the results presented are mean
values over 5 executions of each test.

To investigate application performance we use the NAS Parallel Benchmark
suite. The CG benchmark presents heavy point-to-point latency driven commu-
nications, while the FT benchmark presents a collective communication pattern
by performing all-to-all operations. Thus the class C problem of those bench-
marks are tested in order to evaluate the performance of point-to-point payload
copy and collective payload copy respectively.

Moreover, we choose the naive pessimistic message logging approach from [2]
and the active optimistic message logging protocol (O2P) from [10] as compar-
ative methods at library level.

4.2 Fault Free Performance Evaluation on NAS Benchmarks

In Fig.6, we plot the normalized execution time of CG according to a growing
number of processors to evaluate the comparative scalability, the standard execu-
tion time of coordinated application-level checkpointing/restart equals 1. Notice
that only the performance penalty associated with message logging is presented
since no checkpoints and faults are imposed. Fig.6 shows that the performance
of the ULML and O2P is comparable, the executions of the two protocols are
very similar and exhibit the same scalability with the overhead stays under 5%.
Conversely pessimistic approach experiences a severe performance degradation
topping at 17% increase in execution time, the increasing point-to-point commu-
nication rate (19988 times at 64 cores to 25992 times at 128 cores for example)

A Message Logging Protocol Based on User Level Failure Mitigation 321

greatly affects the overhead induced by pessimistic message logging. But our
ULML is immune to this defect by avoiding any bandwidth consumption, ex-
cept for appending the SSN which has a negligible influence on the message
size. Overall, considering its simplicity of implementation, the ULML presents a
salutary alternative to refined message logging protocols at library level.

Fig. 6. Scalability of CG Class C Fig. 7. Scalability of FT Class C

Fig.7 presents the execution time of FT with processor numbers ranging from
16 to 512, normalized to each benchmark with standard execution. For up to 512
cores, the scalability of the proposed message logging approach is excellent since
the overhead is solely due to sender-based payload logging. Also, O2P works quite
well up to 64 processes, but when the amount of data piggybacked continues to
increase because the event logger is overloaded and does not manage to log the
determinants in time, O2P eventually suffers from at most a 6% slowdown in our
test case. The performance superiority is mainly imputed to the better handling
of collectives in the ULML, and the overhead induced by it is very close to the
error margin of measurements.

4.3 Recovery Performance Evaluation

We simulate a fault on a processor by sending SIGKILL to a process, CG Class
C running on 8 processes is chosen as our test case. First we checkpoint the
system at iteration 10, then introduce a failure to process 3 at iteration 70.
Table 2 presents the elapsed wall clock time and CPU time consumed to recover
the system. We find that the ULML reduces the wall clock time by 26.9% and
saving CPU time by 22.1%. Also, different phases of the recovery procedure
are timed to measure the factors limiting the speed of our restart protocol. Take
process 1 as an example: it spends 0.1253 seconds on communicator maintenance
in Errorhandler, and 0.002924 seconds on recovery mechanism in Errorhandler
to resend 4741 messages (these two time statistics are not stable, but will not
exceed 0.2 seconds). After finishing the Errorhandler segment, process 1 enters a
suspended state for 59.761 seconds. Therefore, we believe that our communicator

322 X. Liu et al.

Table 2. Comparison of recovery time-consumption (Seconds)

Checkpoint/Restart User level message logging
Failure free Failure occurred Failure free Failure occurred

Wall time 2.78 5.24 2.83 3.83

CPU time 21.33 38.54 22.12 30.01

maintenance and recovery mechanism are lightweight, and the bottleneck is the
re-execution of the substitution process.

5 Related Work

Research on message logging has a long history. The seminal paper by Strom
and Yemini presented a recovery protocol for distributed systems which per-
mits communication, computation and checkpoint to proceed asynchronously,
thus introducing the concept of message logging and causality tracking [13].
Sender-based message logging was introduced by Johson and Zwaenepoel [14],
by describing how to secure the correctness of the protocol with the Send Se-
quence Number and the messages logged in sender’s volatile memory. Alvisi
and Marzullo presented a classification of the different message logging schemes
into three families: pessimistic, optimistic, and causal, according to the different
methods of logging reception orders [6]. Recently, Bouteiller used determinism in
MPI applications to reduce the number of determinants to log [8]. Guermouche
proposed an uncoordinated checkpointing protocol for send-deterministic MPI
applications and achieved a satisfying overhead [9]. But all the researches above
rely on modifying the MPI library, thus they will face portability issues and
induce multiple overhead for collectives in all cases.

The User-Level Failure Mitigation proposal was put forward to improve the
resilience of application from programming model in 2012. This proposal allows
libraries and applications to increase the fault tolerance capabilities by support-
ing additional types of failures, and build other desired strategies and consistency
models to tolerate faults. The ULFM proposal makes it possible to elevate the
message logging layer and guarantee the portability.

6 Conclusion

In this article, we introduce the user level message logging protocol, a new kind
of portable fault tolerance method for MPI programs. The new methodology
proposed is simple yet effective, particularly suited for collective communication
intensive programs. Overall, our work facilitates the adoption of message logging
in large-scale scientific computing programs.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China under Grant No.61303071 and 61120106005, and funds
(No.124200011) from Guangzhou Science and Information Technology Bureau.

A Message Logging Protocol Based on User Level Failure Mitigation 323

References

1. Bland, W.: User level failure mitigation in mpi. In: Caragiannis, I., Alexander, M.,
Badia, R.M., Cannataro, M., Costan, A., Danelutto, M., Desprez, F., Krammer,
B., Sahuquillo, J., Scott, S.L., Weidendorfer, J. (eds.) Euro-Par Workshops 2012.
LNCS, vol. 7640, pp. 499–504. Springer, Heidelberg (2013)

2. Meneses, E., Bronevetsky, G., Kale, L.V.: Evaluation of simple causal message
logging for large-scale fault tolerant hpc systems. In: Proceedings of the 2011 IEEE
International Symposium on Parallel and Distributed Processing Workshops and
PhD Forum, IPDPSW 2011, pp. 1533–1540. IEEE Computer Society (2011)

3. Yang, X., Wang, Z., Xue, J., Zhou, Y.: The reliability wall for exascale supercom-
puting. IEEE Transactions on Computers 61, 767–779 (2012)

4. Xu, X., Yang, X., Lin, Y.: Wbc-alc: A weak blocking coordinated application-level
checkpointing for mpi programs. IEICE Transactions, 786–796 (2012)

5. Chakravorty, S., Kale, L.: A fault tolerance protocol with fast fault recovery. In:
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2007,
pp. 1–10 (2007)

6. Alvisi, L., Marzullo, K.: Message logging: Pessimistic, optimistic, causal, and op-
timal. IEEE Trans. Softw. Eng. 24, 149–159 (1998)

7. Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J.: Correlated set coordination
in fault tolerant message logging protocols. In: Jeannot, E., Namyst, R., Roman,
J. (eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 51–64. Springer, Heidelberg
(2011)

8. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model
for high performance. Concurr. Comput.: Pract. Exper. 22, 2196–2211 (2010)

9. Guermouche, A., Ropars, T., Brunet, E., Snir, M., Cappello, F.: Uncoordinated
checkpointing without domino effect for send-deterministic mpi applications. In:
2011 IEEE International Parallel Distributed Processing Symposium (IPDPS),
pp. 989–1000 (2011)

10. Bouteiller, A., Ropars, T., Bosilca, G., Morin, C., Dongarra, J.: Reasons for a
pessimistic or optimistic message logging protocol in mpi uncoordinated failure
recovery. In: IEEE International Conference on Cluster Computing (Cluster 2009),
New Orleans, États-Unis, pp. 1–9 (2009)

11. Rabenseifner, R.: Automatic mpi counter profiling of all users: First results on a
cray t3e 900-512. In: Proceedings of the Message Passing Interface Developer’s and
User’s Conference(MPIDC 1999), pp. 77–85 (1999)

12. Patarasuk, P., Yuan, X.: Bandwidth efficient allreduce operation on tree topolo-
gies. In: IEEE IPDPS Workshop on High-Level Parallel Programming Models and
Supportive Environments, pp. 1–8 (2007)

13. Strom, R., Yemini, S.: Optimistic recovery in distributed systems. ACM Trans.
Comput. Syst. 3, 204–226 (1985)

14. Zwaenepoel, W., Johnson, D.: Sender-Based Message Logging. In: Proceedings of
the Seventeenth International Symposium on Fault-Tolerant Computing, pp. 49–66
(1987)

	A Message Logging Protocol Based on User Level Failure Mitigation
	1Introduction
	2Motivation and Basic Idea
	2.1Message Logging at Library Level
	2.2Our Approach: Message Logging at User Level
	2.3Comparison of Overhead

	3Framework of the Protocol and Its Implementation
	3.1Sender Based Payload Copy
	3.2Communicator Maintenance
	3.3Recovery
	3.4Implementation of User Level Message Logging

	4 Experiments
	4.1Evaluation Methodology
	4.2Fault Free Performance Evaluation on NAS Benchmarks
	4.3Recovery Performance Evaluation

	5Related Work
	6Conclusion

